Influence of synthesis conditions on electrophysical properties of layered potassium polytitanates

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The influence of the pH value in the dispersions during washing the potassium polytitanate powder (PPT) after its molten salt synthesis on electrical properties of the obtained product, namely conductivity, permittivity and tangent of dielectric losses. It is established that the samples obtained in weakly alkaline conditions (pH = 7.44 and 8.50), are characterized by higher values of low-frequency conductivity and dielectric permittivity (up to 10^{5), low value of the relaxation time (0.112 and 0.358, respectively). The differences of the studied objects are considered as a result of the changes in their chemical composition depending on acidity of the medium during synthesis, primarily caused by ion-exchange of potassium cations located in the interlayer space of the PPT with hydronium ions from aqueous solution. In the high frequency range, where the nature of conductivity is determined by electron structure of the PPT polyanions, the electrical properties of the obtained are practically independent on washing conditions.


1. Wang Q., Guo Z., Chung J. S. Formation and structural characterization of potassium titanates and the potassium ion exchange property. Materials Research Bulletin, 2009, vol. 44, no. 10, pp. 1973–1977. DOI: 10.1016/j.materresbull.2009.06.009.
2. Milanovi\.{с M., Stijepovi\.{с I., Nikoli\.{с L. M. Preparation and photocatalytic activity of the layered titanates. Processing and Application of Ceramics, 2010, vol. 4, no. 2, pp. 69–73. DOI: 10.2298/PAC1002069M.
3. He M., Feng X., Lu X., Ji X., Liu C., Bao N., Xie J. A controllable approach for the synthesis of titanate derivatives of potassium tetratitanate fiber. Journal of materials science. 2004, vol. 39, no. 11, pp. 3745–3750. DOI: 10.1023/B:JMSC.0000030729.33628.b8.
4. Gorokhovskii A. V., Goffman V. G., Gorshkov N. V., Tret'yachenko E. V., Telegina O. S., Sevryugin A. V. Electrophysical Properties of Ceramic Articles Based on Potassium Polytitanate Nanopowder Modified By Iron Compounds. Glass and Ceramics, 2015, vol. 72, no 1–2, pp. 54–56. DOI: 10.1007/s10717–015–9722–6.
5. Goffman V. G., Gorokhovsky A. V., Kompan M. M., Tretyachenko E. V., Telegina O. S., Kovnev A. V., Fedorov F. S. Electrical properties of the potassium polytitanate compacts. J. Alloys Comp., 2014, vol. 615, no. 12, pp. 526–529. DOI: 10.1016/j.jallcom.2014.01.121.
6. Telegina O. S., Goffman V. G., Gorokhovsky A. V., Kompan M. E., Sleptsov V. V., Gorshkov N. V., Kovineva N. N., Kovnev A. V. Harakter provodimosti v amorfnom polititanate kalija [The nature conductivity in the amorphous potassium polytitanate]. Elektrokhimicheskaya energetika [Electrochemical energetics], 2015, vol. 15, no. 1, pp. 23–28 (in Russian).
7. Roy S. C., Sharma G. L., Bhatnagar M. C., Manchanda R., Balakrishnan V. R., Samanta S. B. Effect of pH on electrical and optical properties of sol-gel derived microcrystalline Ba_{0.5Sr_{0.5TiO_{3 thin films. Appl. Surf. Sci, 2004, vol. 236, no. 1, pp. 306–312. DOI: 10.1016/j.apsusc.2004.05.017.
8. Ivanov-Shic A. K., Murin I. V. Ionika tverdogo tela [Solid State Ionics]. St.-Petersburg, Izd-vo S.-Peterb. un-ta, 2000, 616 p. (in Russian).
9. Mott N. F., Davis E. A. Electronic processes in non-crystalline materials. Oxford, Clarendon press, 1971, 608 p.
10. Barsoukov E., Macdonald J. R. Impedance Spectroscopy Theory, Experiment, and Applications.  USA, Hoboreu: John Wiley & Sons, 2005, 595 р.
11. Sanchez-Monjaras T., Gorokhovsky A. V., Escalante-Garcia J. I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO_{2/K_{2O molar ratio. J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065. DOI: 10.1111/j.1551–2916.2008.02574.x.

Файл статьи: