ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Burashnikova M. M., Klyuev V. V., Khramkova T. S., Gritsenko S. D. Hybrid Supercapacitors in Aqueous Electrolytes. Electrochemical Energetics, 2019, vol. 19, iss. 1, pp. 3-?. DOI: 10.18500/1608-4039-2019-19-1-3-36, EDN: FSRHMZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 67)
Article type: 

Hybrid Supercapacitors in Aqueous Electrolytes

Burashnikova Marina Mikhailovna, Saratov State University
Khramkova Tat'yana Sergeevna, Saratov State University
Gritsenko Stanislav Dmitrievich, Saratov State University

A review of the current literature on hybrid supercapacitors (hybrid devices) in acid and alkaline electrolytes is presented.

The main trends in the development of modern hybrid carbon/PbO2 devices in sulphate electrolyte aimed at increasing the energy density, power, and cyclic durability consist in using a positive electrode of high amorphous or nanostructured lead dioxide (usually in the form of a thin film, nanowire). In addition, to improve the specific characteristics, it is proposed to use a carbon substrate for the positive electrode. Alternative carbon electrolytes, such as methanesulfonic acid, can be used in carbon/PbO2 devices.

In alkaline electrolyte, hybrid devices based on activated carbon and nickel oxide/hydroxide are used as negative and positive electrodes, respectively. Research has mainly focused on the production of nickel oxide in various ways, on the use of various substrates for the deposition of metal oxide, and on the use of electrodes, where the nickel in the positive electrode is partially replaced by cobalt, manganese, or zinc. Alternatively, the nickel in the electrode can be completely replaced by nanostructured cobalt hydroxide or bismuth oxide.


1. Brousse T., Belanger D., Long J. W. To Be or Not To Be Pseudocapacitive?. J. Electrochem. Soc., 2015, vol. 162, pp. A5185–A5189. DOI:

2. Kёotz R., Carlen M. Principles and applications of electrochemical capaci-tors. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. DOI:

3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells. J. Electrochem. Soc., 2003, vol. 150, pp. A484–A492. DOI:

4. Guillemet P., Dugas R., Scudeller Y., Brousse T. Electro-thermal analysis of a hybrid activated carbon/MnO2 aqueous electrochemical capacitor. 207th Meeting of the ElectroChemical Society. Quebec City, Canada, May, 15–20, 2005.

5. Dasoyan M. A., Aguf I. A. Sovremennaya teoriya svintsovogo akkumulyatora [Modern Lead Battery Theory]. Leningrad, Energiya Publ., 1975. 312 p. (in Russian).

6. Pell W. G., Conway B. E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery type electrodes. J. Power Sources, 2004, vol. 136, pp. 334–345. DOI:

7. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New ultracapacitors developed by JSC ESMA for various applications. Proceedings of the 8th international seminar on double-layer capacitors and similar devices. Deerfield Beach, FL, Florida Educational Seminars Inc., December 1998.

8. Toupin M., Bґelanger D., Hill I. R., Quinn D. Performance of experimental carbon blacks in aqueous supercapacitors. J. Power Sources, 2005, vol. 140, pp. 203–210. DOI:

9. Vol’fkovich Yu. M., Shmatko P. A. High Energy Supercapacitors. Proceeding of the, 8th international seminar on double layer capacitors and similar energy storage devices. Deerfield Beach, FL, 1998, special issue.

10. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–958.

11. Moseley P. T., Nelson R. F., Hollenkamp A. F. The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources, 2006, vol. 157, pp. 3–10. DOI:

12. Cericola D., Kotz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta, 2012, vol. 72, pp. 1–17. DOI:

13. Chen H., Cong T. N., Yang W., Tan C., Li Y., Ding Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci., 2009, vol. 19, pp. 291–312. DOI:

14. Kazaryan S. A., Razumov S. N., Litvinenko S. V., Kharisov G. G., Kogan V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc., 2006, vol. 153, pp. A1655–А1671. DOI:

15. Ni J., Wang H., Qu Y., Gao L. PbO2 electrodeposited on graphite for hybrid supercapacitor applications. Phys. Scr., 2013, vol. 87, no. 4. 045802. DOI:

16. Yu N., Gao L., Zhao S., Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim. Acta, 2009, vol. 54, pp. 3835–3841. DOI:

17. Perret P., Brousse T., Bґelanger D., Guay D. Electrochemical template synthesis of ordered lead dioxide nanowires. J. Electrochem. Soc., 2009, vol. 156, pp. A645–A651. DOI:

18. Pletcher D., Wills R. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) : Part II. Flow cell studies. Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 1779–1785. DOI:

19. Hazza A., Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : IV. The influence of additives. J. Power Sources, 2005, vol. 149, pp. 103–111. DOI:

20. Li X., Pletcher D., Walsh F. C. A novel flow battery : A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode. Electrochim. Acta, 2009, vol. 54, pp. 4688–4695. DOI:

21. Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : III. The influence of conditions on battery per-formance. J. Power Sources, 2005, vol. 149, pp. 96–102. DOI:

22. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead(II) : V. Studies of the lead negative electrode. J. Power Sources, 2008, vol. 180, pp. 621–629. DOI:

23. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead (II) : Part VI. Studies of the lead dioxide positive electrode. J. Power Sources, 2008, vol. 180, pp. 630–634. DOI:

24. Perret P., Khani Z., Brousse T., Belanger D., Guay D. Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim. Acta, 2011, vol. 56, pp. 8122–8128. DOI:

25. Kopczynski K., Kolanowski L., Baraniak M., Lota K., Sierczynska A., Lota G. Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Current Applied Physics, 2017, vol. 17, iss. 1, pp. 66–71. DOI:

26. Wenli Zhang, Haibo Lin, Haishen Kong, Haiyan Lu, Zhe Yang, Tingting Liu. High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate. International Journal of Hydrogen Energy, 2014, vol. 39, iss. 30, pp. 17153–17161. DOI:

27. Grgur B. N., Zeradjanin A., Gvozdenovic M. M., Maksimovic M. D., Trisovic T. Lj., Jugovic B. Z. Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell. J. Power Sources, 2012, vol. 217, pp. 193–198. DOI:

28. Petersson I., Ahlberg E. Oxidation of electrodeposited lead–tin alloys in 5 M H2SO4. J. Power Sources, 2000, vol. 91, pp. 143–149. DOI:

29. Lam L. T., Louey R. Development of ultra-battery for hybrid-electric vehicle applications. J. Power Sources, 2006, vol. 158, pp. 1140–1148. DOI:

30. Lam L. T., Louey R., Haigh N. P., Lim O. V., Vella D. G., Phyland C. G., Vu L. H., Furukawa J., Takada T., Monma D., Kano T. VRLA ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources, 2007, vol. 174, pp. 16–29. DOI:

31. Cooper A., Furakawa J., Lam L., Kellaway M. The UltraBattery-a new battery design for a new beginning in hybrid electric vehicle energy storage. J. Power Sources, 2009, vol. 188, pp. 642–649. DOI:

32. Furukawa J., Takada T., Monma D., Lam L. T. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications. J. Power Sources, 2010, vol. 195, pp. 1241–1245. DOI:

33. Wu Zhang, Yao Hui Qu, Li Jun Gao. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate. Chinese Chemical Letters, 2012, vol. 23, iss. 5, pp. 623–626. DOI:

34. Conway B. E., Pell W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem., 2003, vol. 7, pp. 637–644. DOI:

35. Yu N., Gao L. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor. Electrochem. Commun., 2009, vol. 11, pp. 220–222.

36. Axion Power International Inc. Site. Available at: (accessed 27 November 2018).

37. Beliakov A. L., Brintsev A. M. Development and Application of Combined Capacitors : Double Electric Layer–Pseudocapacity. Proceedings of the 7th International Seminar on Double-Layer Capacitors and Similar Energy Storage Devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1997. Vol. 7.

38. Beliakov A. L. Technological aspects of reliability of electrochemical capacitors being used at heavy-duty operating conditions. Proceedings of the 8th international seminar on double-layer capacitors and similar Devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1998.

39. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New ultracapacitors developed by jsc esma for various applications. Proceedings of the 8th international seminar on double-layer capacitors and similar devices. Florida Educational Seminars Inc., Deerfield Beach, FL, December 1998.

40. Stepanov A. B., Varakin I. N., Menukhov V. V. Double layer capacitor. US Patent 5986876, 1999.

41. Burke A. Ultracapacitors : why, how, and where is the echnology. J. Power Sources, 2000, vol. 91, pp. 37–50. DOI: (in Russian).

42. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors. Electrochemical Energetics, 2001, vol. 1, no. 4, pp. 14–28 (in Russian).

43. Belyakov A. I. Electrochemical supercapacitors : their state-of-the-art and design problems. Electrochemical Energetics, 2006, vol. 6, no. 3, pp. 146–149 (in Russian).

44. Inoue H., Namba Y., Higuchi E. Preparation and haracterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors. J. Power Sources, 2010, vol. 195, pp. 6239–6244. DOI:

45. Zhao Y., Lai Q. Y., Hao Y. J., Ji X. Y. Study of electrochemical performance for AC/(Ni1/3Co1/3Mn1/3)(OH)2. J. Alloys Compd., 2009, vol.~471, pp. 466–469. DOI:

46. Wang H., Gao Q., Hu J. Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. J. Power Sources, 2010, vol. 195, pp. 3017–3024. DOI:

47. Liang Y.-Y., Li H.-L., Zhang X.-G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Mater. Sci. Eng. A, 2008, vol. 473, pp. 317–322. DOI:

48. Kong L.-B., Liu M., Lang J.-W., Luo Y.-C., Kang L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc., 2009, vol. 156, iss. 12, pp. A1000–A1004. DOI:

49. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, vol. 161, pp. 1479–1485. DOI:

50. Kolathodi M. S., Palei M., Natarajan T. S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A, 2015, vol. 3, pp. 7513–7522. DOI:

51. Ren X., Guo C., Xu L., Li T., Hou L., Wei Y. Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 19930–19940. DOI:

52. Yan J., Fan Z., Sun W., Ning G., Wei T., Zhang Q., Zhang R., Zhi L., Wei F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, vol. 22, pp. 2632–2641. DOI:

53. Ji J., Zhang L. L., Ji H., Li Y., Zhao X., Bai X., Fan X., Zhang F., Ruoff R. S. Nanoporous Ni(OH)2 thin film on 3d ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, vol. 7, pp. 6237–6243. DOI:

54. Peng S., Li L., Wu H. B., Madhavi S., Lou X. W. D. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater., 2015, vol. 5, iss. 2, pp. 1401172. DOI:

55. Cai F., Kang Y., Chen H., Chen M., Li Q. Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A, 2014, vol. 2, pp. 11509–11515. DOI:

56. Dai C. S., Chien P. Y., Lin J. Y., Chou S. W., Wu W. K., Li P. H., Wu K. Y., Lin T. W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 12168–12174. DOI:

57. Wang D.-W., Li F., Cheng H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J. Power Sources, 2008, vol. 185, pp. 1563–1568. DOI:

58. Kazarinov I. A., Volynskii V. V., Klyuev V. V., Novoselov M. A. From alkaline accumulators to supercapacitors. Nickel oxide electrode : Theory of processes and modern technologies of manufacture. Electrochemical Energetics, 2017, vol. 17, no. 4, pp. 173–224. DOI: (in Russian).

59. Park J. H., Park O. O., Shin K. H., Jin C. S., Kim J. H. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem. Solid-State Lett., 2002, vol. 5, iss. 2. pp. H7–H10. DOI:

60. Jun Yan, Zhuangjun Fan, Wei Sun, Guoqing Ning, Tong Wei, Qiang Zhang, Rufan Zhang, Linjie Zhi, Fei Wei. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, vol. 22, pp. 2632–2641 DOI:

61. Feng Luan, Gongming Wang, Yichuan Ling, Xihong Lu, Hanyu Wang, Yexiang Tong, Xiao-Xia Liu, Yat Li. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale, 2013, vol. 5, pp. 7984–7990. DOI:

62. Zhe Tang, Chun-hua Tang, Hao Gong. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Adv. Funct. Mater., 2012, vol. 22, pp. 1272–1278. DOI:

63. Hailiang Wang, Yongye Liang, Tissaphern Mirfakhrai, Zhuo Chen, Hernan Sanchez Casalongue, Hongjie Dai. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res., 2011, vol. 4, iss. 8, pp. 729–736. DOI:

64. Wei Yu, Xinbing Jiang, Shujiang Ding, Ben Q. Li. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J. Power Sources, 2014, vol. 256, pp. 440–448. DOI:

65. Li R., Lin Z., Ba X., Li Y., Ding R., Liu J. Integrated copper–nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horiz., 2016, vol. 1, iss. 2, pp.150–155. DOI:

66. Hsing-Chi Chien, Wei-Yun Cheng, Yong-Hui Wang, Shih-Yuan Lu. Ultrahigh specifi c capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites. Adv. Funct. Mater., 2012, vol. 22, iss. 23, pp. 5038–5043. DOI:

67. Linrui Hou, Ruiqi Bao, Muhammad Rehan, Liuniu Tong, Gang Pang, Xiaogang Zhang, Changzhou Yuan. Uniform hollow mesoporous nickel cobalt sulfide microdumbbells : a competitive electrode with exceptional gravimetric/volumetric pseudocapacitance for high-energy-density hybrid superapacitors. Adv. Electron. Mater., 2017, vol. 3, iss. 2, no. 1600322. DOI:

68. Hou L., Shi Y., Zhu S., Pang G., Rehan M., Zhang X., Yuan C. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles : unusual formation and appealing pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A, 2017, vol. 5, pp. 133–144. DOI:

69. Ferreira C. S., Passos R. R., Pocrifka L. A. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors. J. Power Sources, 2014, vol. 271, pp. 104–107. DOI:

70. Wang X., Li M., Chang Z., Wang Y., Chen B., Zhang L., Wu Y. Orientated Co3O4 nanocrystals on mwcnts as superior battery-type positive electrode material for a hybrid capacitor. J. Electrochem. Soc., 2015, vol. 162, pp. A1966–A1971. DOI:

71. Tang C., Tang Z., Gong H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J. Electrochem. Soc., 2012, vol. 159, pp. A651–A656. DOI:

72. Yu X. Z., Lu B. G., Xu Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes. Adv. Mater., 2014, vol. 26, iss. 7, pp. 1044–1051. DOI:

73. Zeng Y., Han Y., Zhao Y., Zeng Y., Yu M., Liu Y., Tang H., Tong Y., Lu X. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater., 2015, vol. 5, no. 1402176. DOI:

74. Lu X. F., Chen X. Y., Zhou W., Tong Y. X., Li G. R. ?-Fe2O3@PANI Core–Shell nanowire arrays as negative electrodes for asymmetric supercapacitors ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 14843–14850. DOI:

75. Lin T. W., Dai C. S., Hung K. C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D -nd Fe3O4/graphene composite electrodes. Sci. Rep., 2014, vol. 4, 7274. DOI:

76. Wang Y., Shen C., Niu L., Li R., Guo H., Shi Y., Li C., Liu X., Gong Y. Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 9977–9985. DOI:

77. Yang S., Song X., Zhang P., Sun J., Gao L. Self-assemblend ?-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small, 2014, vol. 10, pp. 2270–2279.

78. Wang D., Li Y., Wang Q., Wang T. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J. Solid State Electrochem., 2012, vol. 16, pp. 2095–2102. DOI:

79. Li R. Z., Wang Y. M., Zhou C., Wang C., Ba X., Li Y. Y., Huang X. T., Liu J. P. Carbon-Stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery–supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater., 2015, vol. 25, pp. 5384–5394.

80. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources, 2006, vol. 161, pp. 1479–1485. DOI:

81. Li L., Zhang X., Zhang Z., Zhang M., Cong L., Pan Y., Lin S. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film : a free-standing negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 16635–16644. DOI:

82. Su H., Cao S., Xia N., Huang X., Yan J., Liang Q., Yuan D. Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties. J. Appl. Electrochem., 2014, vol. 44, pp. 735–740. DOI:

83. Senthilkumar S. T., Selvan R. K., Ulaganathan M., Melo J. S. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim. Acta, 2014, vol. 115, pp. 518–524. DOI:

84. Zuo W., Zhu W., Zhao D., Sun Y., Li Y., Liu J., Lou X. W. Bismuth oxide : a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci., 2016, vol. 9, pp. 2881–2891. DOI: https://10.1039/C6EE01871H

85. Qu D., Wang L., Zheng D., Xiao L., Deng B., Qu D. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes. J. Power Sources, 2014, vol. 269, pp. 129–135. DOI: