Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrochemical Characteristics and Phase Composition of Lithium-Manganese Oxide Spinel with Excess Lithium Li_(1 + x)Mn₂O₄

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The paper presents the results of the study of phase composition and electrochemical performance of lithium-manganese oxide spinel with excess lithium of nominal composition of Li1 + xMn2O4 obtained by solid-phase method. It was established that samples with x = 0.1 and 0.2 were composite materials with LiMn2O4 being the basic phase and Li2MnO3 being the impurity (3 and 7 mas.%, respectively) also comprising trace amounts of MnO2. The composite material with 3% of Li2MnO3 (x = 0.1) retained 80–90% of the initial specific capacity after 300 charge-discharge cycles at C/2, while single-phase stoichiometric spinel LiMn2O4 retained less than 70–75%.

Literature

1. Dobrovolsky Yu. A., Bushkova O. V., Astaf’ev E. A., Evshchik E. Yu., Kayumov R. R., Korchun A. V., Drozhzhin O. V. Litij-ionnye akkumuljatory dlja jelektrotransporta [Li-ion batteries for electric vehicle]. Chernogolovka, IPKhF RAN, 2019. 110 p. (in Russian).

2. Blomgren G. E. The development and future of lithium ion batteries. J. Electrochem. Soc., 2017, vol. 164, no. 1. P. A5019–A5025. DOI: https://doi.org/10.1149/2.0251701jes

3. Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, vol. 3, no. 4, pp. 267–278. DOI: https://doi.org/10.1038/s41560-018-0107-2

4. Julien C. M., Mauger A., Zaghib K., Groult H. Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2014, vol. 20, pp. 132–154. DOI: https://doi.org/10.3390/inorganics2010132

5. Mauger A., Julien C. M. Critical review on lithium-ion batteries : are they safe? Sustainable? Ionics, 2017, vol. 23, no. 8, pp. 1933–1947. DOI: https://doi.org/10.1007/s11581-017-2177-8

6. Whittingham M. S. Lithium batteries and cathode materials. Chem. Rev., 2004, vol. 104, no. 10, pp. 4271–4302. DOI: https://doi.org/10.1021/cr020731c

7. Bruce P. G. Energy storage beyond the horizon : Rechargeable lithium batteries. Solid State Ionics, 2008, vol. 179, no. 21–26, pp. 752–760. DOI: https://doi.org/10.1016/j.ssi.2008.01.095

8. Nitta N., Wu F., Lee J. T., Yushin G. Li-ion battery materials : present and future. Mater. Today, 2015, vol. 18, no. 5, pp. 252–264. DOI: https://doi.org/10.1016/j.mattod.2014.10.040

9. Winter M., Besenhard J. O., Spahr M. E., Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998, vol. 10, no. 10, pp. 725–763. DOI: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

10. Daniel C., Mohanty D., Li J., Wood D. L. Cathode materials review. AIP Conf. Proc., 2014, vol. 1597, pp. 26–43. DOI: https://doi.org/10.1063/1.4878478

11. Sheth J., Karan N. K., Abraham D. P., Nguyen C. C., Lucht B. L., Sheldon B. W., Guduru P. R. In situ stress evolution in Li1 + xMn2O4 thin films during electrochemical cycling in Li-ion cells. J. Electrochem. Soc., 2016, vol. 163, no. 13. P. A2524–A2530. DOI: https://doi.org/10.149/2.0161613jes

12. Ledwaba R. S., Sayle D. C., Ngoepe P. E. Atomistic simulation and characterisation of spinel Li1 + xMn2O4 (0 ≤ x ≤ 1) nanoparticles. ACS Appl. Energy Mater., 2020, vol. 3, no. 2. pp. 1429–1438. DOI: https://doi.org/10.1021/acsaem.9b01870

13. Shibiri B., Ledwaba R. S., Ngoepe P. E. Discharge induced structural variation of simulated bulk Li1 + xMn2O4 (0 ≤ x ≤ 1). Opt. Mater., 2019, vol. 92, pp. 67–70. DOI: https://doi.org/10.1016/j.optmat.2019.03.050

14. Tarascon J. M., Guyomard D. Li Metal-free rechargeable batteries based on Li1 + xMn2O4 cathodes (0 ≤ x ≤ 1) and carbon anodes. J. Electrochem. Soc., 1991, vol. 138, no. 10, pp. 2864–2868. DOI: https://doi.org/10.1149/1.2085331

15. Chan H. W., Duh J. G., Sheen S. R. LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries. J. Power Sources, 2003, vol. 115, pp. 110–118. DOI: https://doi.org/10.1016/s0378-7753(02)00616-x

16. Li B., Chen M., Bai H., Huang X., Guo J. Synthesis, characterization and electrochemical properties of Li1 + xMn2O4 spinels prepared by solution combustion synthesis. Adv. Mater. Res., 2013, vol. 652–654, pp. 891–895. DOI: https://doi.org/10.4028/www.scientific.net/AM~R.652-654.891

17. Tarascon J. M., Guyomard D., Baker G. L. An update of the Li metal-free rechargeable battery based on Li1 + xMn2O4 cathodes and carbon anodes. J. Power Sources, 1993, vol. 44, no. 1–3, pp. 689–700. DOI: https://doi.org/10.1016/0378-7753(93)80220-J

18. Chan H. W., Duh J. G., Sheen S. R. Microstructure and electrochemical properties of LBO-coated Li-excess Li1 + xMn2O4 cathode material at elevated temperature for Li-ion battery. Electrochim. Acta, 2006, vol. 51, pp. 3645–3651. DOI: https://doi.org/10.1016/j.electacta.2005.10.018

19. Wang Y., Nishiuchi S., Kuroki T., Yamasaki N., Takikawa S., Bignall G. Hydrothermal synthesis of spinel Li1 + xMn2O4 as cathode material for rechargeable lithium battery. Int. J. High Pressure Res., 2001, vol. 20, pp. 299–305. DOI: https://doi.org/10.1080/08957950108206177

20. Rodrı́guez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 1993, vol. 192, no. 1–2, pp. 55–69. DOI: https://doi.org/10.1016/0921-4526(93)90108-I

21. Julien C., Mauger A., Vijh A., Zaghib K. Lithium Batteries : Science and Technology. New York, etc., Springer, 2016, pp. 175–180.

22. Jiao F., Bao J., Hill A. H., Bruce P. G. Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem., 2008, vol. 120, pp. 9857–9862. DOI: https://doi.org/10.1002/ange.200803431

23. Han C.-G., Zhu C., Saito G., Akiyama T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochim. Acta, 2016, vol. 209, pp. 225–234. DOI: https://doi.org/10.1016/j.electacta.2016.05.075

24. Reddy K. S., Gangaja B., Nair S. V., Santhanagopalan D. Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochim. Acta, 2017, vol. 250, pp. 359–367. DOI: https://doi.org/10.1016/j.electacta.2017.08.054

25. Yu H., Dong X., Pang Y., Wang Y., Xia Y. High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta, 2017, vol. 228, pp. 251–258. DOI: https://doi.org/10.1016/j.electacta.2017.01.096

26. Xiong L., Xu Y., Tao T., Song J., Goodenough J. B. Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 24563–24568. DOI: https://doi.org/10.1039/C2JM34717B

27. Komaba S., Sasaki T., Kumagai N. Preparation and electrochemical performance of composite oxide of alpha manganese dioxide and Li–Mn–O spinel. Electrochim. Acta, 2005, vol. 50, pp. 2297–2305. DOI: https://doi.org/10.1016/j.electacta.2004.10.056

Full Text (PDF):
(downloads: 81)