Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrochemical Behavior of MnO2-electrode in Aprotic Organic Solutions of Salts of Lanthanum and its Analogs (Rare Earth Elements)

DOI: https://doi.org/10.18500/1608-4039-2017-17-1-19-28

Method of cathodic introduction of lanthanum and its analogues in dioksigenazy electrode in the potentiostatic mode, the received manganites LnyMn1 − yO2. For example, lanthanum established the accelerating influence of the phase of the manganite in the composition of the MnO2 electrode in the process of intercalation of lithium. The methods of scanning microscopy, x-ray phase analysis, secondary mass spectrometry of ions and measuring the potential at open circuit constituted LayMn1 − yO2 and LixLayMn1yO2. Discovered that among the REE (La, Nd, Ho, Sm, Gd, Tb, Yb, Lu, Dy, Eu) from lanthanum (La) to gadolinium (Gd) has been progressively reducing the constant introduction of kiDelta i/Delta (1/sqrt(t)), the diffusion component of the process CLnsqrt(DLn) and density of the discharge current i(0). After gadolinium (Gd) up to the europium (Eu) kinetic characteristics within the error retains a constant value. Discovered two regions of potentials with different trend values of ki,CLnsqrt(DLn) and i(0): the displacement of the potential from −2.5 to −2.9 V. In the tendency to their reduction, with a further offset to −2.0 V. In the upward trend. The influence of temperature and duration of introduction of lantan to the further intercalation of lithium.

Literature

1. Попова С. С., Францев Р. К., Гусева Е. С. Влияние природы редкоземельного металла на кинетику электрохимических процессов на MnO2-электродах в апротонных органических растворах // Электрохим. энергетика. 2011. Т. 11, № 2. С. 108–111.

2. Францев Р. К., Попова С. С., Гусева Е. С. Электрохимическое интеркалирование MnO2-электрода в апротонных органических растворах солей редкоземельных элементов // Изв. вузов. Химия и химическая технология. 2011. Т. 54, № 5. С. 94–98.

3. Йи Т.-Ф., Ли Ч. Я., Жу Я.-Р., Жу Р.-С., Шу Ж. Кинетика электрохимической интеркаляции ионов лития для получения катодного материала – шпинели LiNi0.5Mn1.5O4 // Электрохимия. 2010. Т. 46, № 2. С. 236–242.

4. Jang Chang-chung, Li Sheng-Xian, Shi Zhong, Shi Zhong, Yang Hang-Xi. Charge – discharge characteristics of composite MnO2 cathode doped with metal oxides // 6th Jnt. Meet. Lithium Batteries.: Extend. Abstr. and Program. Münster, 1992. P. 315–317.

5. Valand T., Nilsson G. The influence of F ions on the electrochemical reactions on oxide-covered A1 // Corrosion Science. 1977. Vol. 17. P. 449–459.

6. Францев Р. К., Гусева Е. С., Попова С. С. Синергетические эффекты на LayMnO2 − δC60Fδ – электродах при катодной обработке в апротонных органических растворах солей лития // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах: материалы ХI Междунар. конф. Новочеркасск: Изд-во ЮРГТУ (НПИ), 2010. С. 98–101.

2

1. Popova S. S., Frantsev R. К., Guseva Е. S. Vlijanie prirodi redkozemelnogo metalla na kinetiku electrochimicheskih prozessov na MnO2-electrodah v aprotonnih organicheskih rastvorah. [The earth rare metall nature influence on electrochemical processes on MnO2-electrode in aprotic organic solutions] Electrokhimicheskaja energrtica [Electrochemical Energetics], 2011, vol. 11, no. 2, pp. 108–111 (in Russian).

2. Frantsev R. К., Popova S. S., Guseva Е. S. Electrochimicheskoe intercalirovanie MnO2-electroda v aprotonnih organicheskih rastvorah solej redkozemelnih elementov. Izvestija vishih uchebnih zavedenij [Electrochemical intercalation of the MnO2 electrode in aprotic organic solutions of rare earth salts]. Chemia i chemicheskaja technologija [Chemistry and Chemical Technology], 2011, vol. 54, no. 5, pp. 94–98 (in Russian).

3. Yi Т.-F., Li Ch. Ya., Gu Ya.-R., Gu R.-S., Chu G. Kinetika electrochimicheskoy intercaljazii ionov litija dlja poluchenija katodnogo materiala- chpineli LiNi0.5Mn1.5O4 [Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 Cathode Material]. Elektrokhimiya [Еlectrochemistry], 2010, vol. 46, no. 2, pp. 236–242 (in Russian).

4. Jang Chang-Chung, Li Sheng-Xian, Shi Zhong, Shi Zhong, Yang Hang-Xi. Charge-discharge characteristics of composite MnO2 cathode doped with metal oxides. 6th Jnt. Meet. Lithium Batteries. Extend. Abstr. and Program. Münster, 1992. P. 315–317.

5. Valand T., Nilsson G. The influence of F ions on the electrochemical reactions on oxide-covered A1. Corrosion Science, 1977, vol. 17, pp. 449–459.

6. Frantsev R. К., Guseva Е. S., Popova S. S. Sinergeticheskie effekty na LayMnO2 − δC60Fδ – elektrodakh pri katodnoi obrabotke v aprotonnykh organicheskikh rastvorakh solei litiya [Synergetic effects on LayMnO2 − δC60Fδ-electrodes under cathodic treatment in aprotic organic solutions of lithium salts]. Fundamental problems of energy conversion in lithium Electrochemical systems: materials ХI Intern. Conf. [Fundamentalnie problemi preobrazovanija energiy v litievih electrochimicheskih sistemah: ХI Megdunar. konf.], Novocherkarsk, YРGТУ (NPI) Publ., 2010, pp. 98–101 (in Russian).

стр. 19
Full Text (PDF):
(downloads: 133)
Файл статьи: