УДК 541.138

ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ MnO₂-ЭЛЕКТРОДА В АПРОТОННЫХ ОРГАНИЧЕСКИХ РАСТВОРАХ СОЛЕЙ ЛАНТАНА И ЕГО АНАЛОГОВ (редкоземельных элементов)

Е. С. Гусева[⊠], С. С. Попова

Энгельсский технологический институт (филиал) Саратовского государственного технического университета им. Гагарина Ю. А. 413100, Россия, Энгельс, Саратовская обл., пл. Свободы, 17

> [™]E-mail: kett-lada@mail.ru Поступила в редакцию 01.03.17 г.

Методом катодного внедрения лантана и его аналогов (Ln) в диоксидномарганцевый электрод в потенциостатическом режиме получены манганиты Ln_yMn_{1-y}O₂. На примере лантана установлено ускоряющее влияние фазы манганита в составе MnO₂-электрода на процесс интеркалирования лития. Методами сканирующей микроскопии, рентгенофазового анализа, вторичной масс-спектрометрии ионов и измерения потенциала в разомкнутой цепи определён состав образующихся фаз La_yMn_{1-y}O₂ и Li_xLa_yMn_{1-y}O₂. Обнаружено, что в ряду лантаноидов (La, Nd, Ho, Sm, Gd, Tb, Yb, Lu, Dy, Eu) от лантана (La) до гадолиния (Gd) имеет место последовательное уменьшение константы внедрения $k_{\rm B} = \Delta i/\Delta(1/\sqrt{t})$, диффузионной составляющей процесса $C_{\rm Ln} \sqrt{D_{\rm Ln}}$ и плотности тока разряда *i*(0)s. После гадолиния (Gd) вплоть до европия (Eu) кинетические характеристики в пределах ошибки эксперимента сохраняют постоянное значение.

Обнаружено две области потенциалов, различающиеся тенденцией к изменению величин $k_{\rm B}$, $C_{\rm Ln} \sqrt{D_{\rm Ln}}$ и i(0): при смещении потенциала от -2.9 до -2.5 В просматривается тенденция к их уменьшению, при дальнейшем смещении до -2.0 В – тенденция к их увеличению.

Установлено влияние температуры и длительности внедрения лантана в MnO₂ на процесс последующего интеркалирования лития.

Ключевые слова: лантан, лантаноиды, литий, диоксид марганца, апротонные органические электролиты, катодное внедрение, интеркалирование, литий-ионные аккумуляторы.

ELECTROCHEMICAL BEHAVIOR OF MnO₂-ELECTRODE IN APROTIC ORGANIC SOLUTIONS OF SALTS OF LANTHANUM AND ITS ANALOGS (Rare Earth Elements)

Ekaterina S. Guseva[™], ORCID: 0000-0001-7328-6765, kett-lada@mail.ru Svetlana S. Popova, ORCID: 0000-0002-9389-3594, tep@techn.sstu.ru

Engels Eechnological institute (Branch) of Saratov State Technical University named after Gagarin Yu. A. 17, sqr. Svobody, Engels, Saratov Region, 413100, Russia

Received 01.03.17

Method of cathodic introduction of lanthanum and its analogues in dioksigenazy electrode in the potentiostatic mode, the received manganites $Ln_yMn_{1-y}O_2$. For example, lanthanum established the accelerating influence of the phase of the manganite in the composition of the MnO₂ electrode in the process of intercalation of lithium. The methods of scanning microscopy, x-ray phase analysis, secondary mass spectrometry of ions and measuring the potential at open circuit constituted $La_yMn_{1-y}O_2$ and $Li_xLa_yMn_{1y}O_2$. Discovered that among the REE (La, Nd, Ho, Sm, Gd, Tb, Yb, Lu, Dy, Eu) from lanthanum (La) to gadolinium (Gd) has been progressively reducing the constant introduction of $k_i = \Delta i/\Delta(1/\sqrt{t})$, the diffusion component of the process $C_{Ln}\sqrt{D_{Ln}}$ and density of the discharge current i(0). After gadolinium (Gd) up to the europium (Eu) kinetic characteristics within the error retains a constant value. Discovered two regions of potentials with different trend values of k_i , $C_{Ln}\sqrt{D_{Ln}}$ and i(0): the displacement of the potential from -2.5 to -2.9 V. In the tendency to their reduction, with a further offset to -2.0 V. In the upward trend. The influence of temperature and duration of introduction of lantan to the further intercalation of lithium.

Key words: lanthanum, lanthanoide series, lithium, manganese dioxide, aprotic organic electrolytes, cathode implementation, intercalation, lithium-ion batteries.

DOI: 10.18500/1608-4039-2017-17-1-19-28

ВВЕДЕНИЕ

Литий-ионные аккумуляторы (ЛИА) одни из самых прогрессивно развивающихся автономных источников питания на рынке производства и потребления [1, 2]. Они широко применяются в военной технике, медицине, в измерительных и вычислительных приборах, бытовых и промышленных электронных устройствах. Соответственно требования к энергоёмкости и мощности ЛИА постоянно растут. Прежде всего, это связано с появлением новых высокотехнологичных устройств на электротяге - электромобилей, беспилотных летательных аппаратов и т. п. [3] Лимитирующим фактором, определяющим поиск способов увеличения их ёмкостных характеристик, является ёмкость катода ЛИА. В связи с этим исследование, поиск и разработка способов усовершенствования катодных материалов являются определяющими в области электрохимического материаловедения. Катодные материалы, используемые в ЛИА, должны обладать высокой способностью к обратимой интеркаляции Li⁺ и накоплению значительных количеств интеркалируемого лития в их структуре, определяющих их ёмкостные характеристики. Мощностные характеристики будут зависеть от механизма процесса интеркаляции – деинтеркаляции и сопровождающих его структурных изменений в материале. Разработка достаточно надёжных, доступных и дешёвых технологий получения катодных материалов на основе методов, обеспечивающих способность обратимо и в больших количествах интеркалировать ионы лития, является важной проблемой при создании эффективных литий-ионных аккумуляторов с высокими удельными характеристиками [4-6].

МЕТОДИКА ЭКСПЕРИМЕНТА

Объектами исследования служили: 1) электроды из диоксида марганца (MnO₂ – 90%, углерод технический печной электропроводный П 267 Э ТУ 38.11574–86–5%, фторопластовая суспензия марки Ф-4Д – 5%) в виде пластин с площадью рабочей поверхности 2.0 см²; 2) диоксидномарганцевые электроды, модифицированные путём катодной обработки в диметилформамидных растворах салицилатов РЗЭ; 3) соли: салицилаты лантаноидов – Ln(OH-C₆H₄-COO)₃, перхлорат лития LiClO₄; 4) растворители: пропиленкарбонат ПК в смеси с диметоксиэтаном ДМЭ и диметилформамид ДМФ.

Модифицирование MnO₂-электрода аналогами осуществлантаном и его ляли путём обработки катодной при E = -2.9 В. Время обработки варьировали от 15 до 60 мин. Поверхность MnO₂электрода перед каждым опытом очищали спиртом и сушили на воздухе в течение 5 минут. Электроды из MnO₂ и соответственно, из La_vMn_{1-v}O₂ перед литированием ополаскивали в 0.8 М растворе LiClO₄ в смеси ПК + ДМЭ (1 : 1). Катодную обработку вели в течение 1 ч при E = -2.9 В в свежей порции этого же раствора. В качестве вспомогательного электрода ($S = 1 \text{ см}^2$) использовали электрод из алюминиевой фольги 99.99% (А99, ГОСТ 11069-74) толщиной 100 мкм, который предварительно обрабатывали по методу катодного внедрения при потенциале E = -2.9 В в течение 1 ч в 0.8 М LiClO₄ в смеси ПК + ДМЭ (1 : 1). При катодном внедрении лития потенциал Li_xMnO₂и Ln_vMn_{1-v}O₂-электродов контролировали с помощью неводного хлоридсеребряного электрода (ХСЭ) в 0.8 М LiClO₄ в смеси ПК + ДМЭ (1 : 1 об.), насыщенном LiCl или соответственно LnCl₃. Потенциал Li⁺/Liэлектрода относительно ХСЭ равен -2.85 В. Исследование влияния потенциала модифицирования MnO₂-электрода лантаном на его последующее электрохимическое поведение в LiClO₄ электролите было проведено в интервале потенциалов от -2.0 до -2.9 В с шагом сканирования 0.1 В.

Исследование влияния температуры как на стадии получения $La_yMn_{1-y}O_2$, так и на стадии его обработки в растворе LiClO₄ было проведено в диапазоне температур от +40 до -20°C. На первом этапе электроды

из La_yMn_{1-y}O₂, полученные обработкой в растворе салицилата лантана при $E_{\rm K} = -2.9$ В в течение 30 мин в указанном интервале температур, подвергали затем катодной обработке в 0.8 M LiClO₄ в смеси ПК + ДМЭ (1 : 1) при $E_{\rm K} = -2.9$ В при температуре 20°C.

Bo второй серии опытов MnO₂электроды модифицировали лантаном при постоянной температуре (20°С), а затем подвергали катодной обработке в растворах 0.8 М LiClO₄ в смеси ПК + ДМЭ (1 : 1) различной температуры при $E_{\kappa} = -2.9$ В. Для исследования состава образующихся фаз использовали методы ВИМС (МИ-1305, СССР), рентгенофазовый анализ и сканирующую электронную микроскопию. Для определения диффузионно-кинетических параметров формируемых плёночных электродов начальные участки *i*, *t*-кривых, отвечающие стадии образования твёрдого раствора внедряющихся ионов в материале электрода, перестраивали в координатах *i*- $-\sqrt{t}$, $i-1/\sqrt{t}$ и по угловым коэффициентам наклона определяли константу внедрения $k_{\rm B}$ как отношение $\Delta i / \Delta (1 / \sqrt{t})$ и соответственно произведение $C\sqrt{D}$. Путём экстраполяции зависимости *i*, \sqrt{t} на ось ординат (*i*) определяли величину і(0), отвечающую скорости стадии собственно акта электрохимического внедрения. Потенциодинамическое циклирование вели в интервале потенциалов от -1.0 до -4.5 В. При циклировании, кроме того, была использована смешанная методика: интеркалирование лития вели при E_{κ} = = -2.9 В в течение 1 ч, а затем разряжали $Li_x La_y Mn_{1-y} O_2$ -электроды постоянной плотностью тока 0.05 м A/cm^2 до $E_p = 0.0$ В.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Если учесть, что потенциалы разряда Ln^{3+} и Li^+ лежат в области высоких отрицательных значений ($E^{\circ}_{La/La^{3+}} =$ = -2.52 B; $E^{\circ}_{Li/Li^+} = -3.04$ B), по сравнению с $E^{\circ}_{MnO_2/Mn^{3+}}$ можно ожидать, что определяющими при формировании фаз внедрения будут размеры внедряющихся атомов и стабильность их электронных структур. Сравнение катодных хроноамперограмм MnO_2 электрода в растворах салицилатов РЗЭ (рис. 1) показывает, что при установлении стационарного состояния ($t \ge 15$ мин)

Рис. 1. Хроноамперограммы процесса внедрения лантаноидов в MnO_2 -электрод при E = -2.9 В в течение 0.5 ч

Fig. 1. It curves introduction lanthanides in MnO₂ electrode at E = -2.9 wV within 0.5 h

плотности тока катодного внедрения европия Eu, диспрозия Dy, лютеция Lu, итербия Yb, тербия Tb, стоящих в ряду РЗЭ после гадолиния, близки по величине и не превышают 20 ± 2 мA/см². В отличие от перечисленных для РЗЭ до гадолиния Gd: Sm, Ho, Nd, La стационарная плотность тока заметно возрастает, однако остаётся в пределах от ≈23 до 28 мА/см². Анализ кинетических характеристик $k_{\rm B}$, $C_{\rm Ln} \sqrt{D_{\rm Ln}}$, i(0), представленных в табл. 1, показал, что в ряду P33 (La, Nd, Ho, Sm, Gd, Tb, Yb, Lu, Dy, Eu) от лантана (La) до гадолиния (Gd) имеет место последовательное уменьшение константы внедрения $k_{\rm B} = \Delta i / \Delta (1 / \sqrt{t})$, диффузионной составляющей процесса $C_{\text{Ln}} \sqrt{D_{\text{Ln}}}$

Таблица 1 / Table 1

Зависимость кинетических характеристик $Ln_yMn_{1-y}O_2$ -электродов от положения элемента Ln в ряду РЗЭ The dependence of kinetic characteristics of $Ln_yMn_{1-y}O_2$ -electrodes, the position of the element Ln in a number of rare earth

Параметри	Элементы										
Парамстры	La	Nd	Sm	Eu	Gd	Tb	Dy	Но	Yb	Lu	
$k_{\rm BLn} = \Delta i / \Delta (1 / \sqrt{t}),$ $MA \cdot cM^{-2} \cdot c^{1/2}$	0.16	0.08	0.09	0.07	0.05	0.051	0.049	0.052	0.05	0.047	
$C_{\text{Ln}} \sqrt{D}_{\text{Ln}}, \text{ моль} \cdot \mathbf{c} \mathbf{m}^{-2} \cdot \mathbf{c}^{-1/2} \cdot 10^{-5}$	9.7	4.8	5.2	4.3	3.15	3.10	2.9	3.13	3.15	2.9	
<i>i</i> (0), мА/см ²	67	65	62.5	58	52	48	46	46	46	46	
Валентное состояние	III	III	III	(II)III	III	III (IV)	(II) III	III	III	(II) III	

и плотности тока разряда *i*(0). После гадолиния (Gd) вплоть до европия (Eu) кинетические характеристики в пределах ошибки эксперимента сохраняют постоянное значение. Это связано с отсутствием валентных электронов на *d*-подуровне Eu в цериевой подгруппе и Yb в тербиевой подгруппе. Последние обеспечивают модифицированному MnO₂-электроду наиболее высокие отрицательные значения $E_{6/T}$. Бестоковые хронопотенциограммы (рис. 2), как и потенциостатические кривые (см. рис. 1), имеют две задержки во времени, что может быть связано с изменением валентного состояния внедрённого РЗЭ в модифицированном La_vMn_{1-v}O₂-электроде вследствие протекания твердофазной реакции в объёме фазы Ln_vMn_{1-v}O₂ через две стадии: перезарядки ионов Ln^{3+} на поверхности (Ln^{3+} + e⁻ → Ln²⁺) и последующего разряда до $Ln^{2+} + 2 e^- \rightarrow Ln^\circ$, или $yLa^{2+} + 2ye^- +$ $MnO_2 \rightarrow Ln_{\nu}Mn_{1-\nu}O_2$.

Это получило своё подтверждение в результатах сканирующей микроскопии, рентгенофазового анализа и вторичной массспектрометрии ионов (рис. 3–4), показавших появление РЗЭ (на примере лантана) в составе MnO₂ и соответственно перераспределение компонентов (La, Mn, O) в составе материала электрода в атомных процентах.

Рис. 2. Бестоковые хронопотенциограммы $Ln_xMn_{1-y}O_2$ -электродов в 0.5 M растворах салицилатов РЗЭ: 1 - La, 2 - Nd, 3 - Sm, 4 - Eu, 5 - Gd, 6 - Tb, 7 - Dy, 8 - Ho, 9 - Yb, 10 - Lu

Fig.2. Currentless chronopotentiometry $Ln_xMn_{1-y}O_2$ electrodes in 0.5 M solutions of salicylates rare earth: l - La, 2 - Nd, 3 - Sm, 4 - Eu, 5 - Gd, 6 - Tb, 7 - Dy, 8 - Ho, 9 - Yb, 10 - Lu

При этом прослеживается явная зависимость свойств $Ln_yMn_{1-y}O_2$ -электродов от положения Ln в цериевой или тербиевой подгруппе: как в одном, так и в другом случае для элементов, проявляющих только валентность 3, имеет место уменьшение отрицательного значения $E_{6/T}$ с увеличением порядкового номера элемента. Накладывает своё влияние и положение элемента в

Электрохимическое поведение MnO₂-электрода в апротонных органических растворах солей лантана и его аналогов (редкоземельных элементов)

Рис. 3. ВИМС образцов электродных материалов, снятых на спектрометре Rigaku ФМАХ 2200/РС: $a - LayMn_{1-y}O_2$, $\delta - Li_xLa_yMn_{1-y}O_2$

Fig.3. SIMS sampels: $a - LayMn_{1-y}O_2$, $b - Li_xLa_yMn_{1-y}O_2$, shot on spectometry Rigaku Φ MAX 2200/PC

Рис. 4. Результаты анализа морфологии и элементного состава электродных материалов: *a* – микрофотографии поверхности образцов исходного MnO₂ (№ 1) и образца MnO₂, обработанного в растворе салицилата лантана (№ 2); *б* – спектр характеристического излучения исходного MnO₂ электрода; *в* – элементный состав в атомных % исходного MnO₂ (№ 1), и образца MnO₂, обработанного в растворе салицилата лантана (№ 2)

Fig. 4. X-ray diffraction: a – Micrograph of the surface of the samples of the original MnO₂ (\mathbb{N}_{2} 1), and MnO₂ sample treated in the solution of lanthanum salicylate (\mathbb{N}_{2} 2); b – spectrum of the characteristic radiation of the original MnO₂ electrode; c – elemental composition in atomic % of the initial MnO₂ (\mathbb{N}_{2} 1), and sample MnO₂ processed in salicylate solution lanthanum (\mathbb{N}_{2} 2)

ряду РЗЭ относительно гадолиния: бестоковые хронопотенциограммы для манганитов Тb, Dy, Ho, Yb, Lu лежат близко к друг другу.

При циклировании в потенциодинамическом режиме после реверса потенциала плотность тока на $La_yMn_{1-y}O_2$ -электродах в точке реверса снижается (рис. 5), сужается петля гистерезиса в следующей последовательности: Gd \gg Nd \gg Lu \gg La \gg Ho \gg Eu>Yb>Tb>Sm и для элементов, расположенных в периодической системе после гадолиния, практически отсутствует, а влияние потенциала на плотность тока проявляется очень слабо.

Рис. 5. Циклические потенциодинамические кривые LnyMn_{1-y}O₂-электродов при $V_p = 40$ мB/с в 0.5 M растворе салицилата РЗЭ в ДМФ

Fig. 5. Cyclic potentiometric curves $LnyMn_{1-y}O_2$ electrodes at $V_p = 40$ mV/c in 0.5 m solution of salicylate of rare earth in DMF

При исследовании влияния потенциала на кинетику процесса интеркалирования лантана в MnO_2 -электрод было обнаружено, что на начальном этапе поляризации в течение первых 5–50 с *i*, *t*-кривые фиксируют минимум плотности тока (рис. 6). Глубина его примерно одинакова и лежит в области значений токов от 10 до 30 мA/см², но время его появления и момент выхода *i*, *t*-кривой на предельное постоянное значение плотности тока *i* зависят не только от природы РЗЭ, но и от величины потенциала. Зависимость от потенциала положения точки минимума на *i*, *t*-кривой имеет периодический характер (см. рис. 6). Таким образом, ход *i*, *t*-кривых указывает, что на электроде протекает процесс фазообразования и можно назвать, по крайней мере, две области, различающиеся степенью интеркалирования РЗЭ в MnO_2 -электрод – это область – (2.0...2.4) В и (2.4...2.9) В. Характерно, что во второй области потенциалов (-2.4...-2.9 В) стационарное состояние на электроде устанавливается намного медленнее, а минимум на *i*, *t*-кривых становится более размытым.

Рис. 6. Потенциостатические кривые La_yMnO₂-электродов в растворах 0.5 М салицилата лантана в ДМФ при потенциалах *E* (от -2.0 до -2.9) В

Fig. 6. Potentiostatic curves La_yMnO_2 in solutions of 0.5 M lanthanum salicylate in DMF at the potentials E (-2.0 to -2.9) V

Анализ зависимости $k_{\rm B}$ и i(0) от потенциала (табл. 2) показал, что для i(0) она близка к линейной, но при смещении потенциала в отрицательную сторону в области E = (-2.4...-2.6) В характеризуется *z*образным переходом. Это согласуется с высказанным выше предположением о протекании двух стадий разряда, характеризующихся различными значениями i(0).

Изучение кинетики процесса интеркалирования – деинтеркалирования лантана из растворов салицилата лантана при

Таблица 2 / Table 2

Характеристики	Е, В									
	-2.9	-2.8	-2.7	-2.6	-2.5	-2.4	-2.3	-2.2	-2.1	-2.0
$k_{\rm BLa} = \Delta i / \Delta (1 / \sqrt{t}),$ MA·cm ⁻² c ^{1/2}	33.3	28.6	33.3	32.2	33.8	25	29	33.3	31.46	31.8
$C_{\text{La}} \sqrt{D_{\text{La}}}$, моль· ·см ⁻² ·с ^{-1/2} ·10 ⁻⁵	20.3	17.4	20.3	19.6	20.6	15.25	17.43	20.3	19.19	19.4
<i>i</i> (0), мА/см ²	65	54	55	64	56	46	72	74	70	69

Зависимость кинетических характеристик $La_yMn_{1-y}O_2$ -электродов от потенциала The dependence of kinetic characteristics of $La_yMn_{1-y}O_2$ from potential

различных температурах (рис. 7, табл. 3) показало, что в диапазоне температур +40...-20°С влияние температуры на процесс интеркалирования лантана, так и на

Рис. 7. Влияние температуры на скорость внедрения лантана в MnO₂-электроды при *E* = -2.9 В в растворе салицилата лантана

Fig. 7. The effect of temperature on the speed of introduction of lanthanum MnO_2 electrode at E = -2.9 V salicylate solution lanthanum

последующей стадии интеркалирования лития, столь незначительно, что им можно пренебречь: плотность тока колеблется в пределах от ~45 мA/см² на начальном этапе поляризации до 10 мA/см² при установлении стационарного состояния и при более длительной поляризации не меняется. Такое явление характерно для реакций, протекающих в твёрдой фазе без разрушения кристаллической решётки. Аналогичная картина наблюдалась и для последующего процесса внедрения лития (рис. 8, табл. 4).

Таблица 3 / Table 3

Зависимость кинетических характеристик $La_yMn_{1-y}O_2$ -электродов от температуры раствора 0.5 М салицилата лантана в ДМФ ($E_{\kappa} = -2.9$ В)

The dependence of kinetic characteristics of La_yMn_{1-y}O₂-electrodes to the temperature of a solution of 0.5 M lanthanum salicylate in DMF $(E_{\kappa} = -2.9 \text{ V})$

Характери-	T, °C									
стики	-20	-10	0	10	20	30	40			
$k_{\rm BLa} = \\ = \Delta i / \Delta (1 / \sqrt{t}), \\ {\rm MA \cdot cm^{-2} c^{1/2}}$	156	148	83	126	222	233	141			
$C_{\text{La}} \sqrt{D_{\text{La}}},$ моль·см ⁻² · ·c ^{-1/2} ·10 ⁻⁵	94	88	50	106	133	140	84.56			
<i>i</i> (0), мА/см ²	32	29	18	41	40	36	32			

С увеличением температуры градиент концентрации ионов лития резко возрастает, снижается их концентрация у поверхности и начинает преобладать влияние процессов массопереноса в твёрдой фазе, скорость которых определяется степенью дефектности поверхностного слоя образующегося $\text{Li}_x \text{La}_y \text{Mn}_{1-y} \text{O}_2$ -электрода и при установлении стационарного состояния лежит в пределах плотности тока (20 ± 5) мА/см². Бестоковые хронопотенциограммы $\text{Li}_x \text{La}_y \text{Mn}_2$ электродов сохраняют ступенеобразный ход при всех температурах и не зависят от по-

Рис. 8. Влияние температуры на скорость внедрения лития в $La_yMn_{1-y}O_2$ -электроды при E = -2.9 В в растворе LiClO₄ (ПК + ДМЭ)

Fig. 8. The effect of temperature on the rate of adoption of lithium in $La_yMn_{1-y}O_2$ for E = -2.9 V a solution of LiClO₄ in (PC+DME)

Таблица 4 / Table 4

Зависимость кинетических характеристик $Li_xLa_yMn_{1-y}O_2$ -электродов от температуры 0.8 M раствора LiClO₄ (ПК + ДМЭ) при E_{κ} – 2.9 B

	The depende	nce of kine	tic (characteristics	5	
of	$Li_x La_y Mn_{1-y}O_2$	electrodes	by	temperature	0,8	Μ
	solution LiClO	4 (PC + DN)	1E)	with $E_{\rm K} - 2.9$	В	

Характери-	<i>T</i> , °C								
стики	-20	-10	0	10	20	40			
$k_{\rm BLi} = \Delta i / \Delta \sqrt{t},$ MA·cm ⁻² c ^{1/2}	3.1	9	6	8.4	5	4.4			
$C_{\text{Li}} \sqrt{D_{\text{Li}}}, \text{ моль-см}^{-2} \cdot c^{-1/2} \cdot 10^{-5}$	189	549	366	513	305	266			
<i>i</i> (0), мА/см ²	17.5	30.5	35	40	41	44			

следовательности термообработки. Однако в растворах LiClO₄ различной температуры (предварительная обработка в растворе салицилата лантана велась при 20°C) бестоковые хронопотенциограммы лежат в области менее отрицательных значений потенциала от -0.8 до -0.1 В, в то время как при варьировании температуры на стадии внедрения лантана устанавливаются более отрицательные значения $E_{6/T}$ Li_xLa_yMnO₂-электродов (от -1.3 до -0.5 В). Это может быть связано с образованием разных по стехиометрическому составу фаз.

Разрыхление структуры на этапе предобработки в растворах салицилата лантана вследствие внедрения лантана не сопровождается сколько-нибудь значительным тепловыделением. Бестоковые хронопотенциограммы как $La_yMn_{1-y}O_2$ -, так и $Li_xLa_yMn_{1-y}O_2$ -электродов сохраняют ступенеобразный ход (см. рис. 2, рис. 9) при всех температурах и не зависят от последовательности термообработки.

Рис. 9. Бестоковые хронопотенциограммы $Li_xLa_yMn_{1-y}O_2$ -электродов в 0.8 M LiClO₄ (ПК + ДМЭ=1 : 1)

Fig. 9. Currentless chronopotentiometry $Li_x La_y Mn_{1-y}O_2$ electrodes in 0.8 M LiClO₄ (PC + DME = 1 : 1)

Установлено, что модифицированные $Li_xLa_yMn_{1-y}O_2$ -электроды работоспособны в диапазоне температур от -20 до $+40^{\circ}C$. При работе в стационарном режиме плотность тока лежит в пределах 40-20 мA/см². С увеличением времени внедрения лантана от 30 до 60 мин она снижается до 10 мA/см^2 вследствие накопления лантана в MnO_2 -электроде и соответственно увеличения степени заселённости вакансий в кристаллической решётке MnO_2 .

Циклирование электродов из Li_xLa_y $Mn_{1-y}O_2$ (рис. 10) в растворе $LiClO_4$ с уменьшающейся скоростью развёртки показывает, что ниже $V_p = 40$ мВ/с процесс растворения – внедрения лития практически переходит в стационарный режим. Этому способствуют накопление продуктов внедрения в более глубоких слоях электрода по мере увеличения числа циклов и уменьшения скорости развёртки потенциала, т. е. увеличения времени внедрения лития на соответствующем цикле.

Рис. 10. Циклические потенциодинамические кривые $La_y Mn_{1-y} O_2$ -электродов в растворе 0.8 M LiClO₄ (ПК + ДМЭ) $t_B(La) = 30$ мин

Fig. 10. Cyclic potentiometric curves $La_yMn_{1-y}O_2$ electrode in a solution of 0.8 M LiClO₄ (PC+DME), $t_{in}(La) = 30$ min

ЗАКЛЮЧЕНИЕ

Установлено изменение диффузионнокинетических характеристик модифицированных MnO₂-электродов в зависимости от природы РЗЭ, времени, потенциала и температуры обработки.

Впервые показано активирующее влияние лантана и его аналогов на электрохимические свойства модифицированных $Ln_yMn_{1-y}O_2$ -электродов и их способность к интеркалированию – деинтеркалированию Ln^{3+} с высокой степенью обратимости электрода в широкой области потенциалов (-1.0 до -4.0 В), температур (-20 до +40°C) и длительности поляризации.

Впервые обнаружено, что катодное внедрение лантана протекает в две стадии: на первой ионы Ln^{3+} восстанавливаются (перезаряжаются) до состояния Ln^{2+} ; на второй ионы Ln^{2+} внедряются в структуру MnO₂, образуя манганиты лантана или его аналогов LnMnO₃, структура которого обеспечивает высокую проводимость по ионам лантанидов и лития.

Впервые установлено, что изменение кинетических характеристик процесса интеркалирования – деинтеркалирования лантанидов, а также последующего процесса интеркалирования – деинтеркалирования лития обусловлено особым распределением электронов на магнитных подуровнях 4fуровня: с увеличением порядкового номера Ln вплоть до гадолиния (Gd) и затем по мере удаления от гадолиния (Gd) к лютецию (Lu) происходит симметричное повторение свойств, но более слабо выраженное. Это касается как стадии перезарядки ионов $Ln^{3+} \leftrightarrow Ln^{2+}$, так и стадии внед-рения ионов Ln^{2+} в подрешётку марганца $yLa^{2+} + 2ye^{-} + MnO_2 \rightarrow Ln_yMn_{1-y}O_2$, и согласуется с обнаружением на зависимостях константы внедрения $k_{\rm B}$ и плотности тока i(0) от потенциала (E - i(0) и $E - k_{\rm B})$ при достижении «граничного» потенциала $E_{\kappa} \approx$ ≈ -2.6 В (относительно ХСЭ) излома и изменения величины угловых коэффициентов наклона $\Delta E / \Delta i(0)$ и $\Delta E / \Delta k_{\rm B}$.

Обнаружено две области потенциалов, различающихся тенденцией к изменению величин $k_{\rm B}$, $C_{\rm Ln} \sqrt{D_{\rm Ln}}$ и i(0): при смещении потенциала от -2.9 до -2.5 В просматривается тенденция к их уменьшению, при дальнейшем смещении до -2.0 В тенденция к их увеличению.

Установлено влияние температуры и длительности внедрения лантана на процесс последующего интеркалирования лития.

СПИСОК ЛИТЕРАТУРЫ

1. Попова С. С., Францев Р. К., Гусева Е. С. Влияние природы редкоземельного металла на кинетику электрохимических процессов на MnO₂-электродах в апротонных органических растворах // Электрохим. энергетика. 2011. Т. 11, № 2. С. 108–111.

2. Францев Р. К., Попова С. С., Гусева Е. С. Электрохимическое интеркалирование MnO₂-электрода в апротонных органических растворах солей редкоземельных элементов // Изв. вузов. Химия и химическая технология. 2011. Т. 54, № 5. С. 94–98.

3. *Йи Т.-Ф., Ли Ч. Я., Жу Я.-Р., Жу Р.-С., Шу Ж.* Кинетика электрохимической интеркаляции ионов лития для получения катодного материала – шпинели LiNi_{0.5}Mn_{1.5}O₄ // Электрохимия. 2010. Т. 46, № 2. С. 236–242. 4. Jang Chang-chung, Li Sheng-Xian, Shi Zhong, Shi Zhong, Yang Hang-Xi. Charge – discharge characteristics of composite MnO₂ cathode doped with metal oxides // 6th Jnt. Meet. Lithium Batteries.: Extend. Abstr. and Program. Münster, 1992. P. 315–317.

5. Valand T., Nilsson G. The influence of F^- ions on the electrochemical reactions on oxide-covered A1 // Corrosion Science. 1977. Vol. 17. P. 449–459.

6. Францев Р. К., Гусева Е. С., Попова С. С. Синергетические эффекты на $La_yMnO_{2-\delta}C_{60}F_{\delta}$ – электродах при катодной обработке в апротонных органических растворах солей лития // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах : материалы XI Междунар. конф. Новочеркасск : Изд-во ЮРГТУ (НПИ), 2010. С. 98–101.

REFERENCES

1. Popova S. S., Frantsev R. K., Guseva E. S. Vlijanie prirodi redkozemelnogo metalla na kinetiku electrochimicheskih prozessov na MnO₂-electrodah v aprotonnih organicheskih rastvorah. [The earth rare metall nature influence on electrochemical processes on MnO₂-electrode in aprotic organic solutions] *Electrokhimicheskaja energrtica* [Electrochemical Energetics], 2011, vol. 11, no. 2, pp. 108–111 (in Russian).

2. Frantsev R. K., Popova S. S., Guseva E. S. Electrochimicheskoe intercalirovanie MnO₂-electroda v aprotonnih organicheskih rastvorah solej redkozemelnih elementov. Izvestija vishih uchebnih zavedenij [Electrochemical intercalation of the MnO₂ electrode in aprotic organic solutions of rare earth salts]. *Chemia i chemicheskaja technologija* [Chemistry and Chemical Technology], 2011, vol. 54, no. 5, pp. 94–98 (in Russian).

3. Yi T.-F., Li Ch. Ya., Gu Ya.-R., Gu R.-S., Chu G. Kinetika electrochimicheskoy intercaljazii ionov litija dlja poluchenija katodnogo materiala- chpineli Li-Ni_{0.5}Mn_{1.5}O₄ [Electrochemical intercalation kinetics of lithium ions for spinel LiNi_{0.5}Mn_{1.5}O₄ Cathode Material]. *Elektrokhimiya* [Electrochemistry], 2010, vol. 46, no. 2, pp. 236–242 (in Russian).

4. Jang Chang-Chung, Li Sheng-Xian, Shi Zhong, Shi Zhong, Yang Hang-Xi. Charge-discharge characteristics of composite MnO₂ cathode doped with metal oxides. 6th Jnt. Meet. Lithium Batteries. Extend. Abstr. and Program. Münster, 1992. P. 315–317.

 Valand T., Nilsson G. The influence of F⁻ ions on the electrochemical reactions on oxide-covered A1. *Corrosion Science*, 1977, vol. 17, pp. 449–459.
Frantsev R. K., Guseva E. S., Popova S. S.

6. Frantsev R. K., Guseva E. S., Popova S. S. Sinergeticheskie effekty na $La_yMnO_{2-\delta}C_{60}F_{\delta}$ – elektrodakh pri katodnoi obrabotke v aprotonnykh organicheskikh rastvorakh solei litiya [Synergetic effects on $La_yMnO_{2-\delta}C_{60}F_{\delta}$ -electrodes under cathodic treatment in aprotic organic solutions of lithium salts]. *Fundamental problems of energy conversion in lithium Electrochemical systems: materials XI Intern. Conf.* [*Fundamentalnie problemi preobrazovanija energiy v litievih electrochimicheskih sistemah : XI Megdunar. konf.*], Novocherkarsk, YPGTY (NPI) Publ., 2010, pp. 98–101 (in Russian).

СВЕДЕНИЯ ОБ АВТОРАХ

Гусева Екатерина Станиславовна – кандидат химических наук, докторант кафедры «Химическая технология», Энгельсский технологический институт (филиал) Саратовского государственного технического университета имени Гагарина Ю. А. Служебный тел.: 8(9378) 19-37-48, e-mail: kett-lada@mail.ru

Попова Светлана Степановна – доктор химических наук, профессор кафедры «Химическая технология», Энгельсский технологический институт (филиал) Саратовского государственного технического университета имени Гагарина Ю. А. Служебный тел.: 8(9378) 19-37-48, e-mail: tep@techn.sstu.ru