ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gil'derman V. K., Antonov B. D. Electrical conductivity and thermal expansion materials on the basis of Pr2-ySryNi1-xCuxO4 (x = 0/1: y = 0/0.15) for cathode of medium temperature electrochemical devices. Electrochemical Energetics, 2012, vol. 12, iss. 2, pp. 59-63. DOI: 10.18500/1608-4039-2012-12-2-59-63, EDN: PEVNKV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 74)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
PEVNKV

Electrical conductivity and thermal expansion materials on the basis of Pr2-ySryNi1-xCuxO4 (x = 0/1: y = 0/0.15) for cathode of medium temperature electrochemical devices

Autors: 
Gil'derman Viktor Karlovich, Institute of high-temperature Electrochemistry UB of RAS
Antonov Boris Dmitrievich, Institute of high-temperature Electrochemistry UB of RAS
Abstract: 

The phase composition, thermal coefficient of linear expansion and electrical conductivity of r1.85Sr0.15Ni1-xCuxO4 (0.0; 0.1; 0.5; 0.9 и 1), Pr2NiO4 and Pr2CuO4 are investigated at air in the temperature range 100-1000°C.
The thermal coefficient of linear expansion are in range of ((11.2–16.6)·10-6 deg-1. The TCLE of some composition close to TCLE of solid electrolyte La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) и Ce0.9Gd0.1O2-? (CGO). Pr1.85Sr0.15Ni0.1Cu0.9O4 has the highest conductivity at temperatures above 350°C.

Reference: 

1. Fukunaga Н., Коуата М., Takahashi N., Wen С., Yamada К. // Solid State Ionics. 2000. Vol. P. 279.
2. Fukunaga H., Ihara M., Sakaki K., Yamada К. // Solid State Ionics. 1996. Vol. 86. P. 1179.
3. Maguire E., Ghrbage B., Margues F. M. B., Labrincha J. A. // Solid State Ionics. 2000. Vol. 127. P. 329.
4. Lee Y K., Kim J. Y. // J. Power Sources. 2003. Vol. 115. P. 219–224.
5. Xia C. R., William R., Chen F. L., Liu F. L. // Solid State Ionics. 2002. Vol. P. 11–16.
6. Huang K., Feng M., Goodenough J. B., Milliken С. H J. Electrochem. Soc. 1997. Vol. 144. P. 3620–3624.
7. Huang K., Feng M., Goodenough J. B., Scherling M. H J. Electrochem. Soc. 1996. Vol. 143. P. 3630–3635.
8. Hayashi H., Suzuki M., Inaba H. // Solid State Ionics. 2000. Vol. 128. P. 131.
9. Вагапов E. Г., Горелов В. П., Богданович H. М., Корзун И. В., Казанцев В. А. // Электрохимия. 2007. Т. 43, № 6. С. 695–698.
10. Pikalova Е. Yu., Murashkina A. A., Maragou V. I., Demin А. К. Strekalovsky V. N., Tsiakaras Р. Е. // Inter. J. Hydrogen Energy. 2011. Vol. 36. P. 6175–6183.
11. Skinner S. J., Kilner J. A. // Solid State Ionics. 2000. Vol. 135. P. 709.
12. Minervini L., Grimes R., Kilner J., Sickafus К. // J. Mater. Chem. 2000. Vol. 10. P. 2349–2358.
13. Kharton V. V, Viskup A., Naumovich E., Margues F. H J. Mater. Chem. 1999. Vol. 9. P. 2623.
14. Li Q., Fan Y., Zhao H., Sun L. P., Huo L. H. // J. Power Sources. 2007. Vol. 167. P. 64.
15. Nishimoto S., Takahashi S., Kameshima, Matsuda M., Miyake M. // J. Ceram. Soc. Jap. 2011. Vol. 119. P. 246.
16. Гилъдерман В. К., Антонов Б. Д. // Электрохим. энергетика. 2011. Т. 11, № 1. С. 30–32.

Received: 
30.06.2012
Accepted: 
30.07.2012
Published: 
30.07.2012