For citation:
Bakhmatyuk B. P., Vengrin B. Y., Grigorchak I. I., Mitsov M. M., Kulik Y. O. Criteria and mechanism of capacity and pseudocapacity charge accumulation in activated carbon in view of its nanoporous structure and electronic structure. Electrochemical Energetics, 2007, vol. 7, iss. 2, pp. 78-?. , EDN: MLJJDZ
Criteria and mechanism of capacity and pseudocapacity charge accumulation in activated carbon in view of its nanoporous structure and electronic structure
The relation between porous structure, electronic properties of carbonaceous material and the capacitance of its interface with an electrolyte is discussed. The sizes of the pores in which the processes of capacitive and pseudocapacitive charge accumulation dominate are determined. Theoretical analysis of the processes taking place on the nanoporous carbon||electrolyte interface has made it possible to recognize the intercalative nature of pseudocapacity and to find the criterion of its manifestation in the form of the formation of a continuous series of stable valency phases. Computer modeling of the processes enabled us to make up corresponding equivalent electric circuits.
1. Shukla A. K., Sampath S., Vijayamohanan K. // Current Science. 2000. V. 79. Р. 1656.
2. Kotz R., Carlen M. // Electrochim. Acta. 2000. V. 45. P. 2483.
3. Conway B. E. Electrochemical Supercapacitors. N. Y.: Plenum Publishing, 1999. 4. Вольфкович Ю. М., Сердюк Т. М. // Электрохимия. 2002. Т. 38. С. 1043.
5. Dietz S. D., Nguyen V. // Proc. 10th Intern. Seminar on Double Layer Capacitors and Similar Energy Storage Devices. USA, Deerfield Beach, 2000. P. 7.
6. Shi H. // Electrochim. Acta. 1996. V. 41. P. 1633.
7. Bockris J. O'M., Devanathan M. A., Muller K. // Proc. R. Soc. 1963. V.A274. P. 55.
8. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. // Electrochim. Acta. 2005. V. 50. P. 1197.
9. Little A. D. // Proc. 4th Intern.Seminar on Double Layer Capacitors and Similar Energy Storage Devices. USA, Deerfield Beach, 1994. P. 32.
10. Кют Р. Н., Сморгонская Э. А., Гордеев С. К., Гречинская А. В., Данишевский А. М. // ФТТ. 1999. Т. 41. С. 1484.
11. Endo M., Takeda T., Kim Y. J., Koshiba K., Ishii K. // Carbon Science. 2001. V. 1. Р. 117.
12. Гуревич Ю. Я., Плесков Ю. В. Фотоэлектрохимия полупроводников. М.: Наука, 1983.
13. Belyakov A. I., Brintsev A. M., Khodyrevskaya N. // Proc. 14th Intern.Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices. USA, Deerfield Beach, 2004. P. 84.
14. Справочник по электрохимии/Под ред. А. М. Сухотина. Л.: Химия, 1981.
15. Мищенко К. П., Полторацкий Г. М. Термодинамика и строение водных и неводных растворов электролитов. Л.: Химия, 1976.
16. Наумов Г. Б., Рыженко Б. Н., Ходаковский И. Л. Справочник термодинамических величин (для геологов). М.: Атомиздат, 1971.
17. Weng To-Chi, Teng Hsisheng // J. Electrochem. Society. 2001. V. 148. P. A368. 18. Lang N. D., Kohn W. // Phys. Rev. B. 1970. V. 1. P. 4555.
19. Anderson P. W. // Phys. Rev. Lett. 1975. V. 34. P. 953.
20. Рычагов А. Ю., Уриссон Н. А., Вольфкович Ю. М. // Электрохимия. 2001. Т. 37. С. 1348.
21. Coe J. V. // Chem. Phys. Lett. 1994. V. 229. P. 161.
22. Tissandier M. D., Cowen K. A., Feng W. Y., Gundbach E., Cohen M. H., Earhart A. D., Coe J. V. // J. Phys. Chem. A. 1998. V. 102. P. 7787.