ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kazarinov I. A., Meshherjakova M. O., Karamysheva L. V. Conversion of wastes into electrical energy troungh microbial electrochemical technologies. Electrochemical Energetics, 2016, vol. 16, iss. 4, pp. 207-225. DOI: 10.18500/1608-4039-2016-16-4-207-225, EDN: YQYJXN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 77)
Language: 
Russian
Article type: 
Article
EDN: 
YQYJXN

Conversion of wastes into electrical energy troungh microbial electrochemical technologies

Autors: 
Kazarinov Ivan Alekseevich, Saratov State University
Meshherjakova Marija Olegovna, Saratov State University
Karamysheva Lyudmila Valer'evna, Saratov State University
Abstract: 

УДК 541.135

DOI: https://doi.org/10.18500/1608-4039-2016-16-4-207-225

The wastewater is potential processing facilities, from which you can receive bioenergy and biochemicals. Recovery of energy and valuable products can partially compensate for the cost of wastewater treatment and reduce some of the dependence on fossil fuels

There are several strategies for biological treatment of industrial and agricultural wastewater: using micro- bial fuel cells; methanogenic anaerobic enzymatic degradation of organic matter in the wastewater; enzymatic production of hydrogen from wastewater; biological chemical production. The first three of these strategies lead to the development of bioenergy (electricity, methane, hydrogen).

This review analyzes the current state of scientific and technical problems and the above bioenergy strategies of treating wastewater containing organic matter.

Reference: 
  1. Logan E., Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electro- chemical Technologies. Science, 2012, vol. 337, pp. 686–690.
  2. Largus T. Angenent, Khursheed Karim, Muthanna H. Al-Dahhan, Brian A. Wrenn, Rosa Domiguez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 2004, vol. 22, no. 9, pp. 478–485.
  3. Kazarinov I. A. Vvedenie v biologicheskuju jelektrohimiju. [Introduction to biological electrochemistry]. Saratov, Izd-vo Sarat. un-ta, 2012. 216 p. (in Russian).
  4. Katz E., Shipway A. N., Willner I. Handbook of fuel cells – Fundamentals, Technology and Application, Eds by W. Vielstich, H. A. Gasteiger, A. Lamm. London, 2003, vol. 1, pp. 355.
  5. Shukla, A. K., Suresh P., Berchmans S., Rajendran A. Biological fuel cells, and their applications. Current Science, 2004, vol. 87, pp. 455–468.
  6. Davila D., Esquivel J., Vigues N. Development and Optimization of Microbial Fuel Cells. J. New Mater. Electroch. Systems, 2008, vol. 11, pp. 99–103.
  7. Tanisho S., Kamiya N. Microbial fuel cell using Enterobacter aerogenes. Bioelectrochem. and Bioenerg, 1985, vol. 21, pp. 25–32.
  8. Lewis K. Symposium on Bioelectrochemistry of Microorganisms, IV. Biochemical Fuel Cells. Bacteriol. Rev., 1966, vol. 30, pp. 101.
  9. Thauer R. K., Kirchniawy F. H., Jungermann K. A. Properties and function of the pyruvate formate lyase reaction in clostridiae. Eur. J. Biochem, 1972, vol. 27, pp. 282.
  10. Raeburn S., Rabinowitz J. C. Pyruvate : ferredoxin oxidoreductase. I. The pyruvate-CO2 exchange reaction. Arch. Biochem. Biophys, 1971, vol. 146, pp. 9.
  11. Jungermann K. A., Thauer R. K., Leimenstoll G., Deker K. Function of reduced pyridine nu- cleotide-ferredoxin oxidoreductase in saccharolytic Clostridia. Biochim. Biophys. Acta, 1973, vol. 305, pp. 268.
  12. Thauer R. K., Jungermann K. A., Deker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 1977, vol. 41, pp. 100.
  13. Suzuki S., Karube I., Matsuoka H., Ueyama S., Kawakubo H., Isoda S., Murahashi T. Biochemical energy conversion by immobilized whole cells. Ann. N. Y. Acad. Sci., 1983, vol. 413, pp. 133.
  14. Suzuki S., Karube I., Matsunaga T., Kuriyama S., Suzuki N., Shirogami T., Takamura T. Biochemical energy conversion using immobilized whole cells of Clostridium butyricum. Biochimie, 1980, vol. 62, pp. 353.
  15. Karube I., Matsunaga T., Tsuru S., Suzuki S. Biochemical fuel cell utilizing immobilized cells of Clostridium butyricum. Biotechnol. Bioeng., 1977, vol. 19, pp. 1727.
  16. Liu C. C., Carpenter N. A., Schiller J. G. Role of platinum black in a bio-fuel cell using glucose or hydrogen as fuel source. Biotechnol. Bioeng., 1978, vol. 20, pp. 1687–1689.
  17. Rabaey K., Verstraete W. Microbial fuel cells : novel biotechnology for energy generation. TRENDS in biotechnology, 2005, vol. 435, no. 6, pp. 291–298.
  18. Schro der U. Anodic electron transfer mechanisms in microbial fuel cells and their energy effiency. Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 2619–2629.
  19. Kano K., Ikeda T. Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci., 2000, vol. 16, pp. 1013.
  20. Davis J. B., Yarbrough Jr. H. F. Preliminary Experiments on a Microbial Fuel Cell. Science, 1962, vol. 137, pp. 615.
  21. Tanaka K., Vega C. A., Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. Bioelectrochem. Bioeng., 1983, vol. 11, pp. 289.
  22. Sell D., Kramer P., Kreysa G. Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell. Appl. Microbiol. Biotechnol., 1989, vol. 31, pp. 211.
  23. Park D. H., Kim S. K., Shin I. H., Jeong Y. Electricity production in biofuel cell using modified graphite electrode with neutral red. J. Biotechnol. Lett., 2000, vol. 22, pp. 1301.
  24. Liu H., Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Sci. Technol., 2004, vol. 38, no. 14, pp. 4040.
  25. Zhen He, Largus T. Application of Bacterial Biocathodes in Microbial Fuel Cells. Electroanalysis, 2006, no. 19–20, pp. 2009–2015.
  26. Bond D. R., Holmes D. E., Tender L. M., Lovely D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, vol. 295, pp. 483.
  27. Logan B. E., Murano C., Scott K., Gray N. D., Head I. M. Electricity generation from cysteine in a microbial fuel cell. Water Research, 2005, vol. 39, pp. 942.
  28. Rabaey K., Lissens G., Siciliano S., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett., 2003, vol. 25, pp. 531.
  29. Bulter J. I. A diheme c-type cytochrome involved in Fe (III) reduction by Geobacter sulfurreducens. J. Bacteriol., 2004, vol. 186, pp. 4042–4045.
  30. Methe B. A. Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science, 2003, vol. 302, pp. 1967–1969.
  31. Rabaey K. Microbial ecology meets electrochemistry : electricity driven and driving communities. The ISME Journal, 2007, vol. 1, pp. 9–18.
  32. Lovley D. R. Microbial energizers : fuel cells that keep on going. Microbe, 2006, vol. 1, pp. 323–329.
  33. Myers C. R. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol., 1992, vol. 194, pp. 3429–3438.
  34. Myers C. R. Role of outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Biotechnol., 2001, vol. 67, pp. 260–269.
  35. Kim H. J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol., 2002, vol. 30, pp. 145–152.
  36. Kim B. H. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 1999, vol. 9, pp. 127–131.
  37. Choi Y. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bull. Korean Chem. Soc., 2003, vol. 24, no. 4, pp. 437–440.
  38. Park D. H. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 2003, vol. 81, pp. 348–355.
  39. Vega C. A. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plane- tarium, Streptococcus lactis and Erwinia dissolvens. Bioelectrochem. Bioenerg., 1987, vol. 17, pp. 217–222.
  40. Tender L. M. Harnessing microbially generated power on the seafloor. Nat. Biotechnol., 2002, vol. 20, pp. 821–825.
  41. Kim H. J. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol., 2002, vol. 30, pp. 145–152.
  42. Bond D. R. Electricity production by Geobacter Sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 2003, vol. 69, pp. 1548–1555.
  43. Zhang X. Modelling of a microbial fuel cell process. Biotechnol. Lett., 1995, vol. 17, pp. 809–812.
  44. Nevin K. P., Lovley D. R. Lack of production of electronshuttling compounds or solubilization of Fe (III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol., 2000, vol. 66, pp. 2248–2251.
  45. Magnuson T. S., Isoyama N., Hodges-Myerson A. L., Davidson G., Maroney M. J., Geesey G. G., Lovley D. R. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe (III) reducing cytochrome c from Geobacter sulfurreducens. Biochem. J., 2001, vol. 359, pp. 147–152.
  46. Bond D. R., Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 2003, vol. 6, pp. 1548–1555.
  47. Nevin K. P., Lovley D. R. Mechanisms for accessing insoluble Fe (III) oxide during dissimilatory Fe (III) reduction by Geothrix fermentans. Appl. Environ. Microbiol., 2002, vol. 68, pp. 2294–2299.
  48. Newman D. K., Kolter R. A role for excreted quinones in extracellular electron transfer. Nature, 2000, vol. 405, pp. 94–97.
  49. Park D. H., Zeikus J. G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol., 2002, vol. 59, pp. 58–61.
  50. Lettinga G. Use of the uflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng., 1980, vol. 22, pp. 699–734.
  51. Jantsch T. G. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor. Bioresour. Technol., 2002, vol. 84, pp. 15–20.
  52. Karim K., Gupta S. K Continuous biotransformation and removal of nitrophenols under denitrifying condi- tions. Water Res., 2003, vol. 37, pp. 2953–2959.
  53. Kalogo Y. Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment : motives and perspectives. World J. Microbiol. Biotechnol., 1999, vol. 15, pp. 523–534.
  54. Angenent L. T. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res., 2002, vol. 36, pp. 4648–4654.
  55. Logan B. E. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol., 2002, vol. 36, pp. 2530–2535.
  56. Yokoi H. Microbial production of hydrogen from starchmanufacturing wastes. Biomass Bioenergy, 2002, vol. 22, pp. 389–395.
  57. Bungay H. R. Confessions of a bioenergy advocate. Trends Biotechnol., 2004, vol. 22, pp. 67–71.
  58. Laufenberg G. Transformation of vegetable waste into value added products : (A) the upgrading concept; (B) practical implementations. Bioresour. Technol., 2003, vol. 87, pp. 167–198.
  59. Khanal S. K. Biological hydrogen production : effects on pH and intermediate products. Intern. J. Hydrogen Energy, 2004, vol. 29, pp. 123–131.
  60. Wu S. Y. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechnol. Prog., 2003, vol. 19, pp. 828–832.
  61. Hussy I. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflo- ra. Biotechnol. Bioeng., 2003, vol. 84, pp. 619–626.
  62. Yu H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Intern. J. Hydrogen Energy, 2002, vol. 27, pp. 1359–1365.
  63. Wu S. Y. Microbial hydrogen production with immobilized sewage sludge. Biotechnol. Prog., 2002, vol. 18, pp. 921–926.
  64. Fang H. H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol., 2002, vol. 82, pp. 87–93.
  65. Chen C. C. Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotech- nol., 2001, vol. 21, pp. 371–379.
  66. Ueno Y. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol., 2001, vol. 57, pp. 555–562.
  67. Ginkel S. V. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol., 2001, vol. 35, pp. 4726–4730.
  68. Gottschalk G. Bacterial Metabolism. Springer-Verlag, 1986. P. 359. DOI: 10.1007/978-1-4684-0465-4.
  69. Rozendal R. A., Hamelers H. V. M., Molencamp R. J., Buisman C. L. N. Performance of single chamber biocatalysed electrolysis with different types of ion exchange membranes. Water Research, 2007, vol. 41, pp. 1984– 1994.
  70. Clauwaert P., Toledo R., D. van der Ha, Crab R., Verstraete W., Hu H., Udert K. M., Rabaey K. Combining biocatalyzed electrolysis with anaerobic digestion. Water Science, 2008, vol. 57, pp. 575–579.
  71. Liu H., Grots S., Logan B. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol., 2005, vol. 39, pp. 4317–4320.
  72. Reshetilov A. N., Ponamoreva O. N., Reshetilova T. A., Bogdanovskaja V. A. Generation of electricity in the biofuel cell based on microbial cells. Messenger of biotechnology, 2005, vol. 1, no.2, pp. 54–62. (in Russian).
  73. Heidrich E. S., Curtis T. P., Dolfing J. Determination of the internal chemical energy of wastewater. Environ. Sci. Technol., 2011, vol. 45, pp. 827.
Received: 
21.10.2016
Accepted: 
21.10.2016
Published: 
25.12.2016