ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Chernyavina V. V., Berezhnaya A. G., Lepeshkin I. O., Dyshlovaya Y. A. Composite C/MnO? electrodes for electrochemical capacitors based on water electrolyte. Electrochemical Energetics, 2021, vol. 21, iss. 3, pp. 156-163. DOI: 10.18500/1608-4039-2021-21-3-156-163, EDN: PDPQSB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 106)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
PDPQSB

Composite C/MnO? electrodes for electrochemical capacitors based on water electrolyte

Autors: 
Chernyavina Valentina Vladimirovna, Southern Federal University
Berezhnaya Aleksandra Grigor'evna, Southern Federal University
Lepeshkin Igor Olegovich, Southern Federal University
Dyshlovaya Yaroslava Aleksandrovna, Southern Federal University
Abstract: 

The electrochemical properties of C/MnO2 composite materials in 1 M sodium sulfate solution were investigated using the methods of cyclic voltammetry, galvanostatic charge-discharge and impedance spectroscopy. It was shown that the capacitive characteristics of the electrodes depend on the nature and the method of obtaining manganese oxide nanoparticles. It was established that the material containing manganese oxide obtained using isoamyl alcohol as a reducing agent has high electrochemical characteristics.

Reference: 

1. He S., Hu C., Hou H., Chen W. Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources, 2014, vol. 246, pp. 754–761. https://doi.org/10.1016/j.jpowsour.2013.08.038

2. Nizhegorodova A. O., Kondratiev V. V. Synthesis and Electrochemical Properties of Composite Materials Based on poly-3,4-ethylenedioxythiophene with Manganese Dioxide Inclusions. Russian Journal of Electrochemistry, 2014, vol. 50, no. 12, pp. 1157–1163. https://doi.org/10.1134/S1023193514120052

3. Volfkovich Yu. M. Electrochemical supercapacitors. Elektrokhimiya, 2021, vol. 57, no. 4, pp. 197–238. (in Russian). https://doi.org/10.31857/S0424857021040101

4. Dai Y., Chen L., Babayan V., Cheng Q., Saha P., Jiang H., Li C. Ultrathin MnO2 nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors. J. Mater. Chem. A, 2015, vol. 3, pp. 21337–21342. https://doi.org/10.1039/C5TA06958K

5. Hou D., Tao H., Zhu X., Li M. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors. Appl. Surf. Sci., 2017, vol. 419, pp. 580–585. https://doi.org/10.1016/j.apsusc.2017.05.080

6. Lang J. W., Yan X. B., Yuan X. Y., Yang J., Xue Q. J. Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors. J. Power Sources, 2011, vol. 196, pp. 10472–10478. https://doi.org/10.1016/j.jpowsour.2011.08.017

7. Vangari M., Pryor T., Jiang L. Supercapacitors : Review of Materials and Fabrication Methods. J. Energy Eng., 2012, vol. 139, pp. 72–79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

8. Wang J.-G., Yang Y., Huang Z.-H., Kang F. Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J. Power Sources, 2013, vol. 224, pp. 86–92. https://doi.org/10.1016/j.jpowsour.2012.09.075

9. Wang T., Song D., Zhao H., Chen J., Zhao C., Chen L., Chen W., Zhou J., Xie E. Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible supercapacitors. J. Power Sources, 2015, vol. 274, pp. 709–717. https://doi.org/10.1016/j.jpowsour.2014.10.102

10. Subramanian V., Zhu H., Wei B. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett., 2008, vol. 453, pp. 242–249. https://doi.org/10.1016/j.cplett.2008.01.042

11. Wang X., Wang X., Huang W., Sebastian P. J., Gamboa S. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources, 2005, vol. 140, pp. 211–215. https://doi.org/10.1016/j.jpowsour.2004.07.033

12. Cao J., Wang Y., Zhou Y., Ouyang J. H., Jia D., Guo L. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem., 2013, vol. 689, pp. 201–206. https://doi.org/10.1016/j.jelechem.2012.10.024

13. Pabst W., Gregorova E. Characterization of Particles and Particle Systems. ICT Prague, 2007. 122 p.

14. Boytsova O. V., Shekunova T. O., Baranchikov A. E. Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment. Russian. Journal of Inorganic Chemistry, 2015, vol. 60, no. 5, pp. 546–551. https://doi.org/10.7868/S0044457X15050025

15. Hatzell K. B., Fan L., Beidaghi M., Boota M., Pomerantseva E., Kumbur E. C., Gogotsi Yu. Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. Applied Materials Interfaces, 2014, vol. 6, pp. 8886–8893. https://doi.org/10.1021/am501650q

16. Toupin M., Brousse T., Belanger D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials, 2004, vol. 16, pp. 3184–3190. https://doi.org/10.1021/cm049649j

17. Zhang Y., Zu L., Lian H., Hu Z., Jiang Y., Liu Y., Wang X., Cui X. An ultrahigh performance supercapacitors based on simultaneous redox in both electrode and electrolyte. Journal of Alloys and Compounds, 2017, vol. 694, pp. 136–144. https://doi.org/10.1016/j.jallcom.2016.09.302

Received: 
18.08.2021
Accepted: 
28.08.2021
Published: 
06.09.2021