Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

The Study of Electrochemical Properties of Lithium Titanate Based Electrodes with Conducting Polymer Binder

DOI: https://doi.org/10.18500/1608-4039-2017-17-3-123-134

The study of new anode material based on Li4Ti5O12 and conducting polymer binder have been performed with use of cyclic voltammetry method. It was shown, that modified composition of anode material has superior properties in comparison with standard composition with PVDF in term of higher specific capacity and kinetic of charge transfer properties. Using of PEDOT:PSS/CMC binder allow to increase of specific capacity up to 14%. SEM-investigations of morphology of material shows the good adhesion to Al substrate and good binder properties of conducting polymers.

Literature

1. Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci., 2011, vol. 4, pp. 3243–3262. DOI: 10.1039/c1ee01598b

2. Manthiram A. Materials Challenges and Opportunities of Lithium Ion Batteries, J. Phys. Chem. Lett., 2011, vol. 2, pp. 176–184. DOI: 10.1021/jz1015422

3. Nitta N., Wu F. J. T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today. 2015, vol. 18, pp. 252–264. DOI: 10.1016/j.mattod.2014.10.040

4. Zhao B., Ran R., Liu M., Shao Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. R. 2015, vol. 98, pp. 1–71. DOI: 10.1016/j.mser.2015.10.001

5. Sandhya C. P., John B., Gouri C. Lithium titanate as anode material for lithium-ion cells: a review. Ionics, 2014, vol. 20, pp. 601–620. DOI: 10.1007/s11581-014-1113-4

6. Wang X., Shen L., Li H., Wang J., Dou H., Zhang X. PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochim. Acta, 2014, vol. 129, pp. 283–289. DOI: 10.1016/j.electacta.2014.02.112

7. Bach S., Pereira-Ramos J., Baffier N. Electrochemical properties of sol–gel Li4/3Ti5/3O4. J. Power Sources, 1999, vol. 81–82, pp. 273–276. DOI: 10.1016/S0378-7753(98)00216-X

8. Sun Y.-K., Jung D.-J., Lee Y. S., Nahm K. S. Synthesis and electrochemical characterization of spinel Li[Li(1 − x)/3CrxTi(5 − 2x)/3]O4 anode materials. J. Power Sources, 2004, vol. 125, pp. 242–245. DOI: 10.1016/j.jpowsour.2003.08.013

9. Y. H. Rho, K. Kanamura, Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol–gel method. J. Solid State Chem., 2004, vol. 177, pp. 2094–2100. DOI: 10.1016/j.jssС. 2004.02.018

10. Liu N., Li W., Pasta M., Cui Y. Nanomaterials for electrochemical energy storage. Front. Phys., 2014, vol. 9, pp. 323–350. DOI: 10.1007/s11467-013-0408-7

11. Xiao L., Chen G., Sun J., Chen D., Xu H., Zheng Y. Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A, 2013, vol. 1, pp. 14618–14626. DOI: 10.1039/c3ta12569f

12. Alviev Kh. Kh. Zavisimost’ jomkosti nanotitanata litija ot toka razrjada [The effect of discharge current upon capacity of lithium nanotitanate]. Elektrokhimicheskaya Energetika [Electrochemical Energetics], 2013, vol. 13, no. 4, pp. 219–224 (in Russian).

13. Huang S., Wen Z., Zhu X., Lin Z. Preparation and Electrochemical Performance of Spinel-Type Compounds Li4AlyTi5 − yO12 (y = 0, 0.10, 0.15, 0.25). J. Electrochem. Soc., 2005, vol. 152. P. A186–190. DOI: 10.1149/1.1833315

14. Li X., Qu M., Yu Z. Structural and electrochemical performances of Li4Ti5 − xZrxO12 as anode material for lithium-ion batteries. J. Alloys Compd., 2009, vol. 487, pp. 12–17. DOI: 10.1016/j.jallcom.2009.07.176

15. Xu D., Wang P., Yang R. Enhanced electrochemical performance of core-shell Li4Ti5O12 / PTh as advanced anode for rechargeable lithium-ion batteries. Ceram. Int., 2017, vol. 43, pp. 7600–7606. DOI: 10.1016/j.ceramint.2017.03.053

16. He Z., Xiong L., Chen S., Wu X., Liu W., Huang K. In situ polymerization preparation and characterization of Li4Ti5O12-polyaniline anode material. Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. s262–s266. DOI: 10.1016/S1003-6326(10)60052-0

17. Apraksin R. V., Eliseeva S. N., Tolstopjatova E. G., Rumyantsev A. M., Zhdanov V. V., Kondratiev V. V. High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene) : poly(styrene sulfonate) / carboxymethylcellulose. Mater. Lett., 2016, vol. 176, pp. 248–252. DOI: 10.1016/j.matlet.2016.04.106

18. Eliseeva S. N., Apraksin R. V., Tolstopjatova E. G., Kondratiev V. V. Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene / polystyrene sulfonate. Electrochim. Acta, 2017, vol. 227, pp. 357–366. DOI: 10.1016/j.electacta.2016.12.157

19. Eliseeva S. N., Levin O. V., Tolstopjatova E. G., Alekseeva E. V., Apraksin R. V., Kondratiev V. V. New functional conducting poly-3,4-ethylenedioxythiopene : polystyrene sulfonate / carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater. Lett., 2015, vol. 161, pp. 117–119. DOI: 10.1016/j.matlet.2015.08.078

20. Sun X., Radovanovic P. V., Cui B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J. Chem., 2015, vol. 39, pp. 38–63. DOI: 10.1039/C4NJ01390E

стр. 123