ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Fomenko N. S., Dinisilov A. S., Grigoryev A. S. Features of Lead-Acid Battery Modelling. Electrochemical Energetics, 2019, vol. 19, iss. 2, pp. 81-?. DOI: 10.18500/1608-4039-2019-19-2-81-89, EDN: GJHRDW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 118)
Language: 
Russian
Article type: 
Article
EDN: 
GJHRDW

Features of Lead-Acid Battery Modelling

Autors: 
Fomenko Nikita Sergeevich, National Research Center "Kurchatov Institute"
Dinisilov Andrei Sergeevich, National Research Center "Kurchatov Institute"
Grigoryev Aleksandr Sergeevich, National Research Center "Kurchatov Institute"
Abstract: 

One of the key steps to improve environmental situation is reducing pollutants released by automobiles. As of now, electric cars are the most commonly used type of eco-friendly vehicles. However, having a limited travel range they require an infrastructure system of charging stations to operate. Moreover, while electric vehicles don’t produce negative emissions directly they can still contribute to pollution if their energy is generated using fossil fuels. To further improve environmental benefits of electric cars charging stations on renewable energy sources should be developed. Such stations usually use battery banks for energy storage. An adequate mathematical model is required for battery parameter estimations and state of life predictions. In this article a lead acid battery model based on Sherepherd’s equation is reviewed. Method specifics are discussed.

Reference: 

1. Ajanovic A., Haas R. Driven with the sun : Why environmentally benign electric vehicles must plug in renewables. Solar Energy, 2015, vol. 121,pp. 169–180.

2. Cugnet M., Dubarry M., Liaw B. Y. Peuket’s Law of a Lead-Acid Battery Simulated by a Mathematical Model. ECS Transactions, 2010, vol. 25, no. 35, pp. 223–233.

3. Aurilio G., Gallo D., Landi C., Luiso M., Rosano A., Landi M., Paciello V. A Battery Equivalent-Circuit Model and an Advanced Technique for Parameter Estimation. 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2015, pp. 1705–1710.

4. Shepherd С. M. Design of Primary and Secondary Cells : II. An Equation Describing Battery Discharge. J. Electrochem. Soc., 1965, vol. 112, iss. 7, pp. 657–664.

5. Tremblay O. Dessaint L-A. Experimental Validation of a Battery Dynamic Model for EV Applications. World Electric Vehicle Journal, 2009, vol. 3, iss. 2, pp. 289–298.

6. Gallo D., Landi C., Luiso M., Morello R. Optimization of Experimental Model Parameter Identification for Energy Storage Systems. Energies, 2013, vol. 6, pp. 4572–4590.

7. Fasih A. Modeling and fault diagnosis of automotive lead-acid batteries. Master’s thesis. Hichcock Hall, Columbus, The Ohio State University Publ., 2006. 94 p.

8. Galushkin D. N., Galushkina N. N. The structural model of alkaline accumulator. Relaxation polarization. Electrochemical Energetics, 2005, vol. 6, no. 1, pp. 41–45 (in Russian).

Received: 
21.01.2019
Accepted: 
05.02.2019
Published: 
24.06.2019