Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Catalytic activity oF LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) Oxides for molten carbonate fuel cell. Part 2. Reaction Mechanisms and Catalytic Activity in (Li0.62K0.38)2CO3 Melt

New mechanisms of oxygen reduction on perovskite related oxides LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) and a rock salt type oxide Li0.1Ni0.9O have been proposed. Based on these mechanisms, a comparison of catalytic activity of the oxides in the temperature range 820–1000 K has been done. It has been shown that catalytic activity of LaLi0.Co0.1Fe0.8O3-d oxide exceeds the activity of Li0.1Ni0.9O below 970 K

Literature

1. Vecherskij S. I., Konopel'ko M. A., Batalov N. N. Kataliticheskaja aktivnost' oksidov LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) v karbonatnom toplivnom jelemente. Chast' I. Poljarizacionnye harakteristiki poristyh gazodiffuzionnyh oksidnyh katodov v kontakte s rasplavom (Li0.62K0.38)2CO3 (jeksperiment) [Catalytic activity of LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) oxides for molten carbonate fuel cell. Part 1. Polarization Characteristics of Porous Gas Diffusion Electrodes in (Li0.62K0.38)2CO3 Melt. An Experimental Study]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2014, vol. 14, no. 3, pp. 133-140 (in Russian).
2. Fontes E., Lagergren C., Simonsson D. Mathematical Modeling of the MCFC Cathode on the Linear Polarization of the NiO Cathode. J. Electroanalytical Chemistry, 1997, vol. 432, pp. 121–128.
3. Jewulski J., Suski L. Model of the Isotropic Anode in the Molten Carbonate Fuel Cell. J. Applied Electrochem., 1984, vol. 14, no. 2, pp. 135–143.
4. Wilemski G. Simple Porous Models for Carbonate Fuel Cells. J. Electrochem. Soc., 1983, vol. 130, no. 1, pp. 117–121.
5. Vecherskij S. I., Konopel'ko M. A., Batalov N. N. Ravnovesnaja koncentracija jelektroaktivnyh chastic v rasplave (Li0.62K0.38)2CO3 i mehanizmy reakcii vosstanovlenija kisloroda na zolotom jelektrode [The Equilibrate Concentration of the Electroactive Species in (Li0.62K0.38)2CO3 Melt and Reaction Mechanisms of the Oxygen Reduction on the Gold Electrode]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2011, vol. 11, no. 3, pp. 120–127 (in Russian).
6. Prins-Jansen J. A., Hemmes K., de Wit J. H. W. An Extensive Treatment of the Agglomerate Model for Porous Electrodes in Molten Carbonate Fuel Cells – I. Qualitative Analysis of the Steady-State Model. Electrochimica Acta, 1997, vol. 42, no. 23–24, pp. 3585–3600.
7. Vecherskij S. I., Konopel'ko M. A., Batalov N. N. Kataliticheskaja aktivnost' katoda iz LaLi0.1Co0.1Fe0.8O3-d v rasplave (Li0.62K0.38)2CO3. Chast' 2. Mehanizmy reakcii i kataliticheskaja aktivnost' oksidnogo jelektroda [Catalytic Activity of LaLi0.1Co0.1Fe0.8O3-d Cathode in (Li0.62K0.38)2CO3 Melt. Part 2. The Reaction Mechanisms and Catalytic Activity of the Oxide Electrode]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2014, vol. 14, no. 1, pp. 19–25 (in Russian).
8. Damaskin B. B., Petrij O. A. Vvedenie v jelektrohimicheskuju kinetiku [Introduction into the electrochemical kinetics]. Moscow, Vyssh. Shkola Publ, 1983, 400 p.
9. Terent'ev D. I. Termodinamicheskoe modelirovanie v mnogo-komponentnyh rasplavlennyh solevyh sistemah na osnove kar-bonatov shhelochnyh metallov. Diss. dokt. chim. Nauk [Thermodynamic modeling in multicomponent molten salt systems based on alkali metal carbonates. Dr. chim. sci. diss.]. Ekaterinburg, 2001, 168 p.
10. Makkus R. C., Hemmes K., de Wit J. H. W. A Comparative Study of NiO(Li), LiFeO2, and LiCoO2 Porous Cathodes for Molten Carbonate Fuel Cells. J. Electrochem. Soc., 1994, vol. 141, no. 12, pp. 3429–3438.
11. Prins-Jansen J. A., Plevier G. A. J., Hemmes K., de Wit J. H. W. An AC–Impedance Study of Dense and Porous Electrodes in Molten-Carbonate Fuel Cells. Electrochimica Acta, 1996, vol.41, no. 7–8, pp. 1323–1329.

стр. 197
Heading: