ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


fuel cell

Диаграммы растворимости тройных систем при NaBH4–NaOH–H2O, KBH4–KOH–H2O, NaBO2–NaOH–H2O И KBO2–KOH–H2O при -10°С

Изучение взаимной растворимости тройных систем NaBH4–NaOH–H2O, KBH4–KOH–H2O, NaOH–NaBO2–H2O и KOH–KBO2–H2O вызывает интерес как с фундаментальной, так и с практической точки зрения. Первые две системы используются в качестве источника водорода в водородной энергетике, в том числе в низкотемпературных топливных элементах; при этом борогидриды превращаются в метабораты. Таким образом, две последние системы представляют собой продукты разряда.

Топливный элемент с твёрдополимерным электролитом: структура каталитического слоя

Изучены состав и структура каталитического слоя топливного элемента с твердополимерным электролитом. Рассмотрено моделирование слоя, позволяющее рассчитать слои, содержащие частицы полимера и катализатора различных форм и размеров. Показана зависимость проводимости и активной площади поверхности каталитического слоя от концентрации частиц полимера. Наилучшие рабочие характеристики топливного элемента наблюдаются при содержании полимера в слое 30–35% об.

Пиролизованный полиакрилонитрил как перспективный электродный материал для электрохимических источников тока

В работе методом электроспиннинга получены нановолоконные маты полиакрилонитрила (ПАН). Методами элементного анализа и рентгеновской фотоэлектронной спектроскопии изучено влияние температуры карбонизации ПАН на объёмный и поверхностный состав пирополимеров.

Влияние структуры каталитических слоёв на производительность твёрдополимерного топливного элемента

С использованием комплексной модели, включающей как решение перколяционной задачи, так и расчёты электрохимической кинетики, рассматриваются особенности работы каталитических слоёв твёрдополимерного топливного элемента с катализатором на основе наноразмерных углеродных материалов, включая графеновые нановолокна. Данные расчётов согласуются с представленными экспериментальными данными по оптимизации состава каталитических слоёв. Показано, что добавка 20 мас.

Металлизация электролитной матрицы щелочного топливного элемента

В работе рассмотрена металлизация электролитной матрицы щелочного матричного топливного элемента, обусловленная растворением платинового катализатора на кислородном электроде этого элемента. Показано, что уровень металлизации зависит от условий функционирования топливного элемента и структурных особенностей его составляющих.

Влияние примесей в газах на работу щелочного топливного элемента

В работе рассмотрено влияние газовых примесей в топливе и окислителе на работу щелочного водородно-кислородного топливного элемента (ТЭ).
Показано, что примесь метана по-разному ведёт себя на аноде и катоде, а все остальные газы (кроме инертных), в том числе и СО, являющийся ядом для ТЭ с кислым электролитом, оказывают влияние на работу щелочного ТЭ через реакцию с КОН. Замена электролита на свежий восстанавливает характеристики ТЭ.

Срок службы батареи щелочных матричных топливных элементов

DOI: 10.18500/1608-4039-2015-15-4-175-179

Отмечены причины, которые приводят к снижению характеристик щелочных матричных электрохимических генераторов (ЭХГ) электрического тока на водородно-кислородных топливных элементах и тем самым ограничивают срок службы батареи топливных элементов. Показано, что хранение ЭХГ, законсервированных специальной газовой смесью, в течение почти 20 лет не приводит к заметному изменению их характеристик.