Для цитирования:
Гильдерман В. К., Антонов Б. Д. Электропроводность и термическое расширение материалов на основе Pr2-ySryNi1-xCuxO4 (x = 0?1: y = 0?0.15) для катодов среднетемпературных электрохимических устройств // Электрохимическая энергетика. 2012. Т. 12, вып. 2. С. 59-63. DOI: 10.18500/1608-4039-2012-12-2-59-63, EDN: PEVNKV
Электропроводность и термическое расширение материалов на основе Pr2-ySryNi1-xCuxO4 (x = 0?1: y = 0?0.15) для катодов среднетемпературных электрохимических устройств
Исследованы фазовый состав, термический коэффициент линейного расширения и электропроводность материалов Pr1.85Sr0.15Ni1-xCuxO4 (0.0; 0.1; 0.5; 0.9 и 1), Pr2NiO4 и Pr2CuO4 на воздухе в интервале температур 100–1000°С. ТКЛР Pr1.85Sr0.15Ni1-хCuхO4, Pr2NiO4 и Pr2CuO4 находится в диапазоне значений (11.2–16.6)·10-6 град-1 и зависит от величины добавки и температурного интервала. Некоторые составы совместимы по ТКЛР с электролитами La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) и Ce0.9Gd0.1O2-? (CGO). Pr1.85Sr0.15Ni0.1Cu0.9O4 имеет наибольшую проводимость при температурах выше 350°С.
1. Fukunaga Н., Коуата М., Takahashi N., Wen С., Yamada К. // Solid State Ionics. 2000. Vol. P. 279.
2. Fukunaga H., Ihara M., Sakaki K., Yamada К. // Solid State Ionics. 1996. Vol. 86. P. 1179.
3. Maguire E., Ghrbage B., Margues F. M. B., Labrincha J. A. // Solid State Ionics. 2000. Vol. 127. P. 329.
4. Lee Y K., Kim J. Y. // J. Power Sources. 2003. Vol. 115. P. 219–224.
5. Xia C. R., William R., Chen F. L., Liu F. L. // Solid State Ionics. 2002. Vol. P. 11–16.
6. Huang K., Feng M., Goodenough J. B., Milliken С. H J. Electrochem. Soc. 1997. Vol. 144. P. 3620–3624.
7. Huang K., Feng M., Goodenough J. B., Scherling M. H J. Electrochem. Soc. 1996. Vol. 143. P. 3630–3635.
8. Hayashi H., Suzuki M., Inaba H. // Solid State Ionics. 2000. Vol. 128. P. 131.
9. Вагапов E. Г., Горелов В. П., Богданович H. М., Корзун И. В., Казанцев В. А. // Электрохимия. 2007. Т. 43, № 6. С. 695–698.
10. Pikalova Е. Yu., Murashkina A. A., Maragou V. I., Demin А. К. Strekalovsky V. N., Tsiakaras Р. Е. // Inter. J. Hydrogen Energy. 2011. Vol. 36. P. 6175–6183.
11. Skinner S. J., Kilner J. A. // Solid State Ionics. 2000. Vol. 135. P. 709.
12. Minervini L., Grimes R., Kilner J., Sickafus К. // J. Mater. Chem. 2000. Vol. 10. P. 2349–2358.
13. Kharton V. V, Viskup A., Naumovich E., Margues F. H J. Mater. Chem. 1999. Vol. 9. P. 2623.
14. Li Q., Fan Y., Zhao H., Sun L. P., Huo L. H. // J. Power Sources. 2007. Vol. 167. P. 64.
15. Nishimoto S., Takahashi S., Kameshima, Matsuda M., Miyake M. // J. Ceram. Soc. Jap. 2011. Vol. 119. P. 246.
16. Гилъдерман В. К., Антонов Б. Д. // Электрохим. энергетика. 2011. Т. 11, № 1. С. 30–32.