Для цитирования:
Бурашникова М. М., Зотова И. В. Сплавы для электродных решёток герметизированных свинцово-кислотных аккумуляторов // Электрохимическая энергетика. 2016. Т. 16, вып. 2. С. 77-87. DOI: 10.18500/1608-4039-2016-16-2-77-87, EDN: YOGQQG
Сплавы для электродных решёток герметизированных свинцово-кислотных аккумуляторов
УДК 541.135
DOI: https://doi.org/10.18500/1608-4039-2016-16-2-77-87
В обзоре рассматриваются работы по исследованию свойств свинцовых сплавов, используемых для изготовления электродных решёток герметизированных и герметичных свинцово-кислотных аккумуляторов.
1. Schumacher E. E., Bouton G. M. A Rapid Visual Test for the Quantitative Determination of Small Concentrations of Calcium in Lead // Metals and Alloys. 1941. Vol. 20(4). P. 434–438.
2. Haring H. F., Thomas U. B. The Electrochemical Behavior of Lead, Lead-Antimony and Lead-Calcium Alloys in Storage Cells // Trans. Electrochem. Soc. 1935. Vol. 68. P. 293–307.
3. Thomas U. B., Forster A., Haring H. E. Corrosion and growth of lead-calcium alloy storage battery grids as a function of calcium content // J. Electrochem. Soc. 1947. Vol. 92. P. 315–325.
4. Mao G. W., Larson J. G., Rao P. Microstructure of lead alloys // Metallography. 1969. Vol. 1. P. 399–423.
5. Burbank J., Simon A. C., Willihnganz E. The Lead-Acid Cell // Advances in electrochemistry and electrochemical engineering / Ed. C. W. Tobias. N.Y.; L.; Sydney; Toronoto: WileyInterscience, 1971. P. 157–164.
6. Bohmann J., Hullmeine U., Voss E., Winsel A. Varta Batterie AG, ILZRO Project LE-277 Active material structure related to cycle life and capacity, Final Report 1 July 1982 to December 1982. International Lead Zinc Research Organization, Inc., Research Triangle Park, NC, USA, 1983.
7. Schumacher E. E., Phipps G. S. Some Physical and Metallurgical Properties of Lead-Calcium Alloys for Storage Cell Grids and Plates // Trans. Electrochem. Soc. 1935. Vol. 68. P. 309–319.
8. Hollenkamp A. F. Premature capacity loss in lead / acid batteries: a discussion of the antimony-free effect and related phenomena // J. Power Sources. 1991. Vol. 36. P. 567–585.
9. Fuchida K., Okada K., Hattori S., Kono M., Yamane M., Takayama T., Yamashita J., Nakayama Y. Yuasa Battery Co., ILZRO Project LE-276 Antimony-free grids for deep discharge, Final Report 1 January 1978 to 31 December 1981. International Lead Zinc Research Organization, Inc., Research Triangle Park, NC, USA. 1982.
10. Takehara Z., Kanamura K., Kawanami M. The Oxidation Reaction of Lead Sulfate Formed at the Interface between the Lead Plate and the Porous Active Material of a Lead Acid Battery // J. Electrochem. Soc. 1990. Vol. 137. P. 800–804.
11. Wolf E. F., Bonilla C. F. Formation of Lead Monoxide as a Cable Sheath Corrosion Product // J. Electrochem. Soc. 1941. Vol. 79. P. 307–329.
12. Lander J. J. Some Preliminary Studies of Positive Grid Corrosion in the Lead-Acid Cell // J. Electrochem. Soc. 1951. Vol. 98. P. 220–224.
13. Lander J. J. Further Studies on the Anodic Corrosion of Lead in H2SO4 Solutions // J. Electrochem. Soc. 1956. Vol. 103. P. 1–8.
14. Burbank J. The Anodic Oxides of Lead // J. Electrochem. Soc. 1959. Vol. 106. P. 369–376.
15. Ruetschi P., Cahan B. D. Discussion of «The Anodic Oxides of Lead» // J. Electrochem. Soc. 1959. Vol. 106. P. 1079–1081.
16. Pavlov D. Processes of formation of divalent lead oxide compounds on anodic oxidation of lead in sulphuric acid // Electrochim. Acta. 1968. Vol. 13. P. 2051–2061.
17. Pavlov D., Popova R. Mechanism of passivation processes of the lead sulphate electrode // Electrochim. Acta. 1970. Vol. 15. P. 1483–1491.
18. Pavlov D., Iordanov N. Growth processes of the anodic crystalline layer on potentiostatic oxidation of lead in sulphuric acid // J. Electrochem. Soc. 1970. Vol. 117. P. 1103–1109.
19. Ruetschi P. Ion Selectivity and Diffusion Potentials in Corrosion Layers PbSO4 Films on Pb in H2SO4 // J. Electrochem. Soc. 1973. Vol. 120. P. 331–336.
20. Winsel A., Voss E., Hullmeine U. The aggregate-of-spheres (’Kugelhaufen’) model of the PbO2 / PbSO4 electrode // J. Power Sources. 1990. Vol. 30. P. 209–226.
21. Caldwell T. W., Sokolov U. S. Effect of Base Lead Composition on Metallurgical Properties of Maintenance-Free Battery Alloys // J. Electrochem. Soc. 1976. Vol. 123. P. 972–977.
22. Nelson R. F., Wisdom D. M. Pure lead and the tin effect in deep-cycling lead / acid battery applications // J. Power Sources. 1991. Vol. 33. P. 165–185.
23. Miraglio R., Albert L., Ghachcham A. El., Steinmetz J. Passivation and corrosion phenomena on lead-calcium-tin alloys of lead / acid battery positive electrodes // J. Power Sources. 1995. Vol. 53. P. 53–61.
24. Simon P., Bui N., Dabosi F. An in situ study of the effect of tin on the passivation of lead-tin alloys // J. Power Sources. 1994. Vol. 50. P. 141–152.
25. Simon P., Bui N., Dabosi F. In situ redox conductivity, XPS and impedance spectroscopy studies of passive layers formed on lead-tin alloys // J. Power Sources. 1995. Vol. 53. P. 163–173.
26. Бурашникова М. М., Зотова И. В., Казаринов И. А., Львов А. Л., Захаревич А. М., Горбачёва Н. Ф. Состав и структура пассивирующих слоёв на поверхности свинца в 4.8М растворе серной кислоты // Электрохим. энергетика. 2011. Т. 11, № 4. С. 213–222.
27. Salmi K., Sundholm G. The anodic behaviour of tin and a lead-tin alloy in sulfuric acid // J. Power Sources. 1992. Vol. 40. P. 217–224.
28. Petersson I., Ahlberg E. Oxidation of electrodeposited lead-tin alloys in 5 M H2SO4 // J. Power Sources. 2000. Vol. 91. P. 143–149.
29. Moseley P. T., Prengaman R. D. In pursuit of high specific energy, high specific power valve-regulated lead-acid batteries // J. Power Sources. 2002. Vol. 107. P. 240–244.
30. Albert L., Chabrol A., Torcheux L., Steyer Ph., Hilger J. P. Improved lead alloys for lead / acid positive grids in electric-vehicle applications // J. Power Sources. 1997. Vol. 67. P. 257–265.
31. Prengaman R. D. The metallurgy and performance of cast and rolled lead alloys for battery grids // J. Power Sources. 1997. Vol. 67. P. 267–287.
32. Prengaman R. D. Wrought lead calcium tin alloys for tubular lead-acid-battery grids // J. Power Sources. 1995. Vol. 53. P. 207–214.
33. Rocca E., Bourguignon G., Steinmetz J. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions // J. Power Sources. 2006. Vol. 161. P. 666–675.
34. Slavkov D., Haran B. S., Popov B. N., Fleming F. Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries // J. Power Sources. 2002. Vol. 112. P. 199–208.
35. Каменев Ю. Б., Киселевич А. В., Остапенко Е. И., Скачков Ю. В. Бессурьмяные сплавы для безуходных (герметизированных) свинцовых аккумуляторов // Журн. прикл. химии. Т. 75, вып. 4. С. 562–565.
36. Simon P., Bui N., Pebere N., Dabosi F., Albert L. Characterization by electrochemical impedance spectroscopy of passive layers formed on lead-tin alloys, in tetraborate and sulfuric acid solutions // J. Power Sources. 1995. Vol. 55. P. 63–71.
37. Pavlov D., Monahov B., Maja M., Penazzi N. Mechanism of action of Sn on the passivation phenomena in the lead-acid battery positive plate (Sn-free effect) // J. Electrochem. Soc. 1989. Vol. 136. P. 27–33.
38. Doёring H., Garche J., Dietz H., Wiezener K. Currentless passivation of the PbO2 electrode with respect to the influence of tin // J. Power Sources. 1990. Vol. 30. P. 41–45.
39. Garche J. Passivation of the positive electrode of the lead / acid battery: a consequence of self-discharge // J. Power Sources. 1990. Vol. 30. P. 47–54.
40. Pavlov D. Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2 // J. Electroanal. Chem. 1981. Vol. 118. P. 167–185.
41. Mattesco P., Bui N., Simon P. Effect of polarisation mode, time and potential on the properties of the passive layer on lead-tin alloys // J. Power Sources. 1997. Vol. 64. P. 21–27.
42. Liu H., Yang Ch., Liang H. The mechanisms for the growth of the anodic Pb(II) oxides films formed on Pb–Sb and Pb–Sn alloys in sulfuric acid solution // J. Power Sources. 2002. Vol. 103. P. 173–179.
43. Burashnikova M. M., Kazarinov I. A., Zotova I. V. Nature of contact corrosion layers on lead alloys: a study by impedance spectroscopy // J. Power Sources. 2012. Vol. 207. P. 19–29.
44. Mao G. W., Rao P. The mechanism of inhibitory actions of additives on the anodic corrosion of Ag alloy Pb +4.5% Sb // Br. Corros. J. 1971. Vol. 6, № 5. P. 122–128.
45. Павлов Д., Ботон М., Стоянова М. Анодная коррозия Pb-Sb-сплава с добавкой Ag // Изв. ин-та физ. химии Болгарской АН. 1965. Т. 5. С. 55–59.
46. Lander J. J. Silver, Cobalt, and Positive-Grid Corrosion in the Lead-Acid Battery // J. Electrochem. Soc. 1958. Vol. 105. P. 289–292.
47. Gillian W. New lead alloys for high-performance lead-acid batteries // J. Power Sources. 2003. Vol. 116. P. 185–192.
48. Lead-based alloy for lead-acid battery, grid for lead-acid battery and lead-acid battery: Pat. EP1496556B1. H01M4/68, H01M4/73, C22C11/06 /Jun Furukawa, Tomohiro Hiraki, Yutaka Mori, Yasuyuki Nehyo. Filing date: Apr 15, 2003. Issue date: Oct 29, 2008.
49. Silver-barium lead alloy for lead-acid battery grids: Pat.EP1264907A1. Also published as US20020182500, US20050142443. H01M4/68, H01M4/73, C22C11/06 / Luis David Silva-Galvan, Luis Francisco Vazquez Del Mercado. Publication date Dec 11, 2002. Filing date May 15, 2002. Priority date Jun 4, 2001.
50. Method for the continuous manufacture of positive battery grids and positive grids obtained by said method: Pat. EP0996987A1. H01M4/68, H01M4/73, C22C11/06 / Luc Albert, Bertrand Madelin. Publication date May 3, 2000. Filing date Jul 24, 1998. Priority date Jul 25, 1997.
51. Lead-based alloy for lead-acid battery grid (text from WO2004104244A1): Pat. EP1629132A1. H01M4/68, H01M4/73, C22C11/06 / J. Furukawa, Y. Nehyo, M. Ozaki. Publication date Mar 1, 2006. Filing date Dec 26, 2003. Priority date May 26, 2003.
52. Бурашникова М. М., Казаринов И. А., Зотова И. В. Электрохимическое поведение Pb-Sn-Ca-Al-Ba сплавов в растворе серной кислоты // Электрохим. энергетика. 2012. Т. 12, № 4. С. 185–193.
53. Burashnikova M. M., Zotova I. V., Kazarinov I. A. Pb-Сa-Sn-Ba grid alloys for valve-regulated lead acid batteries // Engineering. 2013. Vol. 5. P. 9–15.
54. Liu H., Yang J., Liang H., Zhuang J., Zhou W. Effect of cerium on the anodic corrosion of Pb-Ca-Sn alloy in sulfuric acid solution // J. Power Sources. 2001. Vol. 93. P. 230–233.
55. Li D. G., Zhou G. S., Zhang J., Zheng M. S. Investigation on characteristics of anodic film formed on PbCaSnCe alloy in sulfuric acid solution // Electrochimica Acta. 2007. Vol. 52. P. 2146–2152.
56. Zhong S., Liu H. K., Dou S. X. Skyllas-Kazacos M. Evaluation of lead-calcium-tin-aluminium grid alloys for valve-regulated lead / acid batteries // J. Power Sources. 1996. Vol. 59. P. 123–129.
57. Zhao S., Lu Y., Zhang Z., Jiang Z. A new lead–calcium alloy for maintenance-free lead / acid batteries // J. Power Sources. 1990. Vol. 31. P. 163–168.
58. Li S., Chen H. Y., Tang M. C., Wei W. W., Xia Z. W., Wu Y. M., Li W. S., Jiang J. X. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid electrolyte // Power Sources. 2006. Vol. 158. P. 914–919.
59. Shervedani R. K., Isfahani A. Z., Khodavisy R. Hatefi-Mehrjardi A. Electrochemical investigation of the anodic corrosionof Pb–Ca–Sn–Li grid alloy in H2SO4 solution // J. Power Sources. 2007. Vol. 164. P. 890–895.