Роль виниленкарбоната в литий-ионных и натрий-ионных аккумулятора

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).

Мини-обзор, посвящённый влиянию добавок виниленкарбоната в электролит литий-ионных и натрий-ионных аккумуляторов на строение и свойства пассивных плёнок на электродах и, соответственно, на характеристики аккумуляторов. Рассмотренная литература охватывает в основном работы последних 20 лет.


1. G.-A. Nazri, G. Pistoia (eds.). Lithium Batteries. Science and Technology. Springer, 2009. 708 p.

2. Skundin A. M., Efimov O. N., Yarmolenko O. V. The state-of-the-art and prospects for the development of rechargeable lithium batteries. Russian Chemical Reviews, 2002, vol. 71, no. 4, pp. 329–346 (in Russian).

3. Peled E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems–The Solid Electrolyte Interphase Model. J. Electrochem. Soc., 1979, vol. 126, pp. 2047–2051.

4. P. B. Balbuena, Y. Wang (eds.). Lithium-ion batteries : Solid-Electrolyte Interface. London, Imperial College Press, 2004. 407 p.

5. Peled E., Golodnitsky D., Ardel G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. J. Electrochem. Soc., 1997, vol. 144, pp. L208–L210.

6. Agubra V., Fergus J. Lithium Ion Battery Anode Aging Mechanisms. Materials, 2013, vol. 6, pp. 1310–1325.

7. Verma P., Maire P., Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta, 2010, vol. 55, pp. 6332–6341.

8. Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources, 2000, vol. 89, pp. 206–218.

9. Yazami R. Surface chemistry and lithium storage capability of the graphite-lithium electrode. Electrochim. Acta, 1999, vol. 45, pp. 87–97.

10. Zhang S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources, 2006, vol. 162, pp. 1379–1394.

11. Zhang S., Ding M. S., Xu K., Allen J., Jow T. R. Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes. Electrochem. Solid-State Lett., 2001, vol. 4, pp. A206–A208.

12. Edström K., Herstedt M., Abraham D. P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources, 2006, vol. 153, pp. 380–384.

13. Yoshida T., Takahashi M., Morikawa S., Ihara C., Katsukawa H., Shiratsuchi T., Yamaki J. Degradation Mechanism and Life Prediction of Lithium-Ion Batteries. J. Electrochem. Soc., 2006, vol. 153, pp. A576–A582.

14. Alliata D. R., Kötz R., Novák P., Siegenthaler H. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun., 2000, vol. 2, pp. 436–440.

15. Zhang Z., Smith K., Jervis R., Shearing P. R., Miller T. S., Brett D. J. L. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes : The Evolution of SEI Morphology and Mechanical Properties. ACS Appl. Mater. Interfaces, 2020, vol. 12, pp. 35132–35141.

16. Yazami R., Reynier Y. F. Mechanism of self-discharge in graphite-lithium anode. Electrochim. Acta, 2002, vol. 47, pp. 1217–1223.

17. Broussely M., Herreyre S., Biensan P., Kasztejna P., Nechev K., Staniewicz R. J. Aging mechanism in Li-ion cells and calendar life predictions. J. Power Sources, 2001, vol. 97–98, pp. 13–21.

18. Agubra V. A., Fergus J. W. The formation and stability of the solid electrolyte interface on the graphite anode. J. Power Sources, 2014, vol. 268, pp. 153–162.

19. Haregewoin A. M., Wotango A. S., Hwang B.J. Electrolyte additives for lithium-ion battery electrodes : Progress and perspectives. Energy Environ. Sci., 2016, vol. 9, pp. 1955–1988.

20. Qian Y., Hu S., Zou X., Deng Z., Xu Y., Cao Z., Kang Y., Deng Y., Shi Q., Xu K., Deng Y. How electrolyte additives work in Li-ion batteries. Energy Storage Materials, 2019, vol. 20, pp. 208–215.

21. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004, vol. 104, p. 4303–4417.

22. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev., 2014, vol. 114, pp. 11503–11618.

23. Ota H., Sakata Y., Otake Y., Shima K., Ue M., Yamaki J. Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte. J. Electrochem. Soc., 2004, vol. 151, pp. A1778–A1788.

24. Ota H., Shima K., Ue M., Yamaki J. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta, 2004, vol. 49, pp. 565–572.

25. Mogi R., Inaba M., Jeong S.-K., Iriyama Y., Abe T., Ogumi Z. Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate. J. Electrochem. Soc., 2002, vol. 149, pp. A1578–A1583.

26. Simon B., Boeuve J.-P. Rechargeable Lithium Electrochemical Cell. US Patent no. 5626981 (1997).

27. Matsuoka O., Hiwara A., Omi T., Toriida M., Hayashi T., Tanaka C., Saito Y., Ishida T., Tan H., Ono S. S., Yamamoto S. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell. J. Power Sources, 2002, vol. 108, pp. 128–138.

28. Aurbach D., Gamolsky K., Markovsky B., Gofer Y., Schmidt M., Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta, 2002, vol. 47, pp. 1423–1439.

29. Zhang S. S., Xu K., Jow T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta, 2006, vol. 51, pp. 1636–1640.

30. Aurbach D., Gnanaraj J. S., Geissler W., Schmidt M. Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3(CF2CF3)3 Solutions for Rechargeable Li-Ion Batteries. J. Electrochem. Soc., 2004, vol. 151, pp. A23–A30.

31. Contestabile M., Morselli M., Paraventi R., Neat R. J. A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. J. Power Sources, 2003, vol. 119–121, pp. 943–947.

32. Ota H., Sakata Y., Inoue A., Yamaguchi S. Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode. J. Electrochem. Soc., 2004, vol. 151, pp. A1659–A1669.

33. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.S., Moon S.-I. Effects of functional electrolyte additives for Li-ion batteries. J. Power Sources, 2007, vol. 172, pp. 901–907.

34. Oesten R., Heider U., Schmidt M. Advanced electrolytes. Solid State Ionics, 2002, vol. 148, pp. 391–397.

35. Barker J., Gao F. Carbonaceous Electrode and Compatible Electrolyte Solvent. US Patent no. 5712059 (1998).

36. Naruse Y., Fudjita S., Omaru A. Non-aqueous Liquid Electrolyte Secondary Cell. US Patent no. 5714281 (1998).

37. Zhang X., Kostecki R., Richardson T. J., Pugh J. K., Ross Jr. P. N. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc., 2001, vol. 148, pp. A1341–A1345.

38. Peled E., Golodnitsky D., Menachem C., Bar-Tow D. An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1998, vol. 145, pp. 3482–3486.

39. El Ouatani L., Dedryvère R., Siret C., Biensan P., Reynaud S., Iratçabal P., Gonbeau D. The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries. J. Electrochem. Soc., 2009, vol. 156, pp. A103–A113.

40. Ahn S., Fukushima M., Nara H., Momma T., Sugimoto W., Osaka T. Effect of fluoroethylene carbonate and vinylene carbonate additives on full-cell optimization of Li-ion capacitors. Electrochem. Commun., 2021, vol. 122, article no. 106905.

41. Michan A. L., Parimalam B. S., Leskes M., Kerber R. N., Yoon T., Grey C. P., Lucht B. L. Fluoroethylene Carbonate and Vinylene Carbonate Reduction : Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chem. Mater., 2016, vol. 28, pp. 8149–8159.

42. Nie M., Chalasani D., Abraham D. P., Chen Y., Bose A., Lucht B. L. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C, 2013, vol. 117, pp. 1257–1267.

43. Kitz P. G., Lacey M. J. Novák P., Berg E. J. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. J. Power Sources, 2020, vol. 477, article no. 228567.

44. Nie M., Demeaux J., Young B. T., Heskett D. R., Chen Y., Bose A., Woicik J. C., Lucht B. L. Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A7008–A7014.

45. Lee S.-H., You H.-G., Han K.-S., Kim J., Jung I.-H., Song J.-H. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J. Power Sources, 2014, vol. 247, pp. 307–313.

46. Sasaki T., Abe T., Iriyama Y., Inaba M., Ogumi Z. Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells. J. Electrochem. Soc., 2005, vol. 152, pp. A2046–A2050.

47. Sasaki T., Jeong S.-K.,, Abe T., Iriyama Y., Inaba M., Ogumi Z. Effect of an Alkyl Dicarbonate on Li-Ion Cell Performance. J. Electrochem. Soc., 2005, vol. 152, pp. A1963–A1968.

48. Wang Y., Nakamura S., Tasaki K., Balbuena P. B. Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive? J. Am. Chem. Soc., 2002, vol. 124, pp. 4408–4421.

49. Ushirogata K., Sodeyama K., Okuno Y., Tateyama Y. Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery. J. Am. Chem. Soc., 2013, vol. 135, pp. 11967–11974.

50. Jeong S.-K., Inaba M., Mogi R., Iriyama Y., Abe T., Ogumi Z. Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions. Langmuir, 2001, vol. 17, pp. 8281–8286.

51. Wang Y., Balbuena P. B. Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate : Density Functional Theory Studies. J. Phys. Chem. B, 2002, vol. 106, pp. 4486–4495.

52. Buqa H., Würsig A., Vetter J., Spahr M. E., Krumeich F., Novák P. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J. Power Sources, 2006, vol. 153, pp. 385–390.

53. Chang C.-C., Hsu S.-H., Jung Y.-F., Yang C.H. Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium-ion battery. J. Power Sources, 2011, vol. 196, pp. 9605– 9611.

54. Sato K., Zhao L., Okada S., Yamaki J. LiPF6 / methyl difluoroacetate electrolyte with vinylene carbonate additive for Li-ion batteries. J. Power Sources, 2011, vol. 196, pp. 5617–5622.

55. Holzapfel M., Jost C., Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chem. Commun., 2004, iss. 18, pp. 2098–2099.

56. Holzapfel M., Jost C., Prodi-Schwab A., Krumeich F. Würsig A., Buqa H., Novák P. Stabilisation of lithiated graphite in an electrolyte based on ionic liquids : An electrochemical and scanning electron microscopy study. Carbon, 2005, vol. 43, pp. 1488–1498.

57. Zheng H., Jiang K., Abe T., Ogumi Z. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006, vol. 44, pp. 203–210.

58. Sato T., Maruo T., Marukane S., Takagi K. Ionic liquids containing carbonate solvent as electrolytes for lithium-ion cells. J. Power Sources, 2004, vol. 138, pp. 253–261.

59. Srour H., Rouault H., Santini C. Imidazolium Based Ionic Liquid Electrolytes for Li-Ion Secondary Batteries Based on Graphite and LiFePO4. J. Electrochem. Soc., 2013, vol. 160, pp. A66–A69.

60. Xiong D., Burns J. C., Smith A. J., Sinha N., Dahn J. R. A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Li / Graphite Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1431–A1435.

61. Sinha N. N., Burns J. C., Dahn J. R. Storage Studies on Li / Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives. J. Electrochem. Soc., 2013, vol. 160, pp. A709–A714.

62. Cho I. H., Kim S.-S., Shin S. C., Choi N.-S. Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C. Electrochem. Solid-State Lett., 2010, vol. 13, pp. A168–A172.

63. Komaba S., Itabashi T., Ohtsuka T., Groult H., Kumagai N., Kaplan B., Yashiro H. Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C / LiMn2O4 Li-Ion Cells. J. Electrochem. Soc., 2005, vol. 152, pp. A937–A946.

64. Shin J., Kim T.-H., Lee Y., Cho E. Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Storage Materials, 2020, vol. 25, pp. 764–781.

65. Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L. Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy. J. Phys. Chem. C, 2013, vol. 117, pp. 13403–13412.

66. Philippe B. DedryveМre R., Gorgoi M., Rensmo H., Gonbeau D., Edström K. Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study. Chem. Mater., 2013, vol. 25, pp. 394–404.

67. Kulova T. L., Emetz V. V., Skundin A. M. Dynamic character of processes at storage of silicon-composite-based electrodes. Electrochemical Energetics, 2016, vol. 16, no. 1, pp. 3–9 (in Russian).

68. Emets V. V., Kulova T. L., Skundin A. M. Dynamic Behavior of Silicon-Based Electrodes at Open Circuit Conditions. Intern. J. Electrochem. Sci., 2017, vol. 12, pp. 2754–2762. 10.20964/2017.04.25

69. Zheng J., Zheng H., Wang R., Ben L., Lu W., Chen L., Chen L., Li H. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium-ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 13229–13238.

70. Schroder K. W., Celio H., Webb L. J., Stevenson K. J. Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes : Influence of Electrochemical Preparation and Ambient Exposure Conditions. J. Phys. Chem. C, 2012, vol. 116, pp. 19737–19747.

71. Yoon T., Chapman N., Seo D. M., Lucht B. L. Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation. J. Electrochem. Soc., 2017, vol. 164, pp. A2082–A2088.

72. Chen L., Wang K., Xie X., Xie J. Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive. Electrochem. Solid-State Lett., 2006, vol. 9, pp. A512–A515.

73. Chen L., Wang K., Xie X., Xie J. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium-ion batteries. J. Power Sources, 2007, vol. 174, pp. 538–543.

74. Martin L., Martinez H., Ulldemolins M., Pecquenard B. Le Cras F. Evolution of the Si electrode / electrolyte interface in lithium batteries characterized by XPS and AFM techniques : The influence of vinylene carbonate additive. Solid State Ionics, 2012, vol. 215, pp. 36–44.

75. Ulldemolins M., Le Crasa F., Pecquenard B., Phan V. P., Martin L., Martinez H. Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries. J. Power Sources, 2012, vol. 206, pp. 245–252.

76. Dalavi S., Guduru P., Lucht B. L. Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. J. Electrochem. Soc., 2012, vol. 159, pp. A642–A646.

77. Kamikawa Y., Amezawa K., Terada K. First-Principles Study on the Mechanical Properties of Polymers Formed by the Electrochemical Reduction of Fluoroethylene Carbonate and Vinylene Carbonate. J. Phys. Chem. C, 2020, vol. 124, pp. 19937–19944.

78. Nguyen C. C., Lucht B. L. Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries. J. Electrochem. Soc., 2014, vol. 161, pp. A1933–A1938.

79. Profatilova I. A., Stock C., Schmitz A., Passerini S., Winter M. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. J. Power Sources, 2013, vol. 222, pp. 140–149.

80. Martı́nez de la Hoz J. M., Balbuena P. B. Reduction mechanisms of additives on Si anodes of Li-ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 17091–17098.

81. Hu Y.-S., Demir-Cakan R., Titirici M.M., Müller J.-O., Schlögl R., Antonietti M., Maier J. Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angew. Chem. Int. Ed., 2008, vol. 47, pp. 1645 –1649.

82. Jin Y., Kneusels N. H., Marbella L. E. Castillo-Martı́nez E., Magusin P. C. M. M., Weatherup R. S., Jónsson E., Liu T., Paul S., Grey C. P. Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. J. Am. Chem. Soc., 2018, vol. 140, pp. 9854–9867.

83. Li M.-Q., Qu M.-Z., He X.-Y., Yu Z.-L. Electrochemical Performance of Si / Graphite / Carbon Composite Electrode in Mixed Electrolytes Containing LiBOB and LiPF6. J. Electrochem. Soc., 2009, vol. 156, pp. A294–A298.

84. Choi N.-S., Yew K. H., Kim H., Kim S.S., Choi W.-U. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte. J. Power Sources, 2007, vol. 172, pp. 404–409.

85. Abe K., Miyoshi K., Hattori T., Ushigoe Y., Yoshitake H. Functional electrolytes : Synergetic effect of electrolyte additives for lithium-ion battery. J. Power Sources, 2008, vol. 184, pp. 449–455.

86. Choi N.-S., Lee Y., Kim S.-S., Shin S.-C., Kang Y.-M. Improving the electrochemical properties of graphite / LiCoO2 cells in ionic liquid-containing electrolytes. J. Power Sources, 2010, vol. 195, pp. 2368–2371.

87. Mazouzi D., Delpuech N., Oumellal Y., Gauthier M., Cerbelaud M., Gaubicher J. Dupré N., Moreau P., Guyomard D., Roué L., Lestriez B. New insights into the silicon-based electrode’s irreversibility along cycle life through simple gravimetric method. J. Power Sources, 2012, vol. 220, pp. 180–184.

88. Lindgren F., Xu C., Niedzicki L., Marcinek M., Gustafsson T., Björefors F., Edström K., Younesi R. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 15758–15766.

89. Gmitter A. J., Plitz I., Amatucci G. G. High Concentration Dinitrile, 3-Alkoxypropionitrile, and Linear Carbonate Electrolytes Enabled by Vinylene and Monofluoroethylene Carbonate Additives. J. Electrochem. Soc., 2012, vol. 159, pp. A370–A379.

90. Park S., Ryu J. H., Oh S. M. Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode. J. Electrochem. Soc., 2011, vol. 158, pp. A498–A503.

91. Seo D. M., Nguyen C. C., Young B. T., Heskett D. R., Woicik J. C., Lucht B. L. Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. J. Electrochem. Soc., 2015, vol. 162, pp. A7091–A7095.

92. Kennedy T., Mullane E., Geaney H., Osiak M., O’Dwyer C., Ryan K. M. High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Lett., 2014, vol. 14, pp. 716–723.

93. Jackson E. D., Prieto A. L. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 30379–30386.

94. Kraynak L. A., Schneider J. D., Prieto A. L. Exploring the Role of Vinylene Carbonate in the Passivation and Capacity Retention of Cu2Sb Thin Film Anodes. J. Phys. Chem. C, 2020, vol. 124, pp. 26083–26093.

95. Zhang W., Ghamouss F., Darwiche A., Monconduit L., Lemordant D., Dedryvère R., Martinez H. Surface film formation on TiSnSb electrodes : Impact of electrolyte additives. J. Power Sources, 2014, vol. 268, pp. 645–657.

96. Ostrovskii D., Ronci F., Scrosati B. B., Jacobsson P. A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1 − y)O2 electrode/non-aqueous electrolyte interface. J. Power Sources, 2001, vol. 94, pp. 183–188.

97. Wang Y., Guo X., Greenbaum S., Liu J., Amine K. Solid Electrolyte Interphase Formation on Lithium-Ion Electrodes. A 7Li Nuclear Magnetic Resonance Study. Electrochem. Solid-State Lett., 2001, vol. 4, pp. A68–A70.

98. Balasubramanian M., Lee H. S., Sun X., Yang X. Q., Moodenbaugh A. R., McBreen J., Fischer D. A., Fu Z. Formation of SEI on Cycled Lithium-Ion Battery Cathodes Soft X-Ray Absorption Study. Electrochem. Solid-State Lett., 2002, vol. 5, pp. A22–A25.

99. Aurbach D., Markovsky B., Rodkin A., Levi E., Cohen Y. S., Kim H.-J., Schmidt M. On the capacity fading of LiCoO2 intercalation electrodes : The effect of cycling, storage, temperature, and surface film forming additives. Electrochim. Acta, 2002, vol. 47, pp. 4291–4306.

100. Edström K., Gustafsson T., Thomas J. O. The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta, 2004, vol. 50, pp. 397–403.

101. Itagaki M., Kobari N., Yotsuda S., Watanabe K., Kinoshita S., Ue M. LiCoO2 electrode / electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy. J. Power Sources, 2005, vol. 148, pp. 78–84.

102. Smart M. C., Lucht B. L., Ratnakumar B. V. Electrochemical Characteristics of MCMB and LiNixCo1 − xO2 Electrodes in Electrolytes with Stabilizing Additives. J. Electrochem. Soc., 2008, vol. 155, pp. A557–A568.

103. Li W., Xiao A., Lucht B. L., Smart M. C., Ratnakumar B. V. Surface Analysis of Electrodes from Cells Containing Electrolytes with Stabilizing Additives Exposed to High Temperature. J. Electrochem. Soc., 2008, vol. 155, pp. A648–A657.

104. Petibon R., Henry E. C., Burns J. C., Sinha N. N., Dahn J. R. Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO2/Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells. J. Electrochem. Soc., 2014, vol. 161, pp. A66–A74.

105. Vetter J., Holzapfel M., Wuersig A., Scheifele W., Ufheil J., Novák P. In situ study on CO2 evolution at lithium-ion battery cathodes. J. Power Sources, 2006, vol. 159, pp. 277–281.

106. Holzapfel M., Würsig A., Scheifele W., Vetter J., Novák P. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. J. Power Sources, 2007, vol. 174, pp. 1156–1160.

107. Wu H.-C., Su C.-Y., Shieh D.-T., Yang M.H., Wu N.L. Enhanced High-Temperature Cycle Life of LiFePO4-Based Li-Ion Batteries by Vinylene Carbonate as Electrolyte Additive. Electrochem. Solid-State Lett., 2006, vol. 9, pp. A537–A541.

108. Sinha N. N., Smith A. J., Burns J. C., Jain G., Eberman K. W., Scott E., Gardner J. P., Dahn J. R. The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2 / Graphite Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1194–A1201.

109. Smith A. J., Burns J. C., Xiong D., Dahn J. R. Interpreting High Precision Coulometry Results on Li-ion Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1136–A1142.

110. Burns J. C., Sinha N. N., Coyle D. J., Jain G., VanElzen C. M., Lamanna W. M., Xiao A., Scott E., Gardner J. P., Dahn J. R. The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells. J. Electrochem. Soc., 2012, vol. 159, pp. A85–A90.

111. Burns J. C., Jain G., Smith A. J., Eberman K. W., Scott E., Gardner J. P., Dahn J. R. Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry. J. Electrochem. Soc., 2011, vol. 158, pp. A255–A261.

112. Burns J. C., Sinha N. N., Jain G., Ye H., VanElzen C. M., Lamanna W. M., Xiao A., Scott E., Choi J., Dahn J. R. Impedance Reducing Additives and Their Effect on Cell Performance : II. C3H9B3O6. J. Electrochem. Soc., 2012, vol. 159, pp. A1105–A1113.

113. Ma X., Harlow J. E., Li J., Ma L., Hall D. S., Buteau S., Genovese M., Cormier M., Dahn J. R. Hindering Rollover Failure of Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells during Long-Term Cycling. J. Electrochem. Soc., 2019, vol. 166, pp. A711–A724.

114. Harlow J. E., Ma X., Li J., Logan E., Liu Y., Zhang N., Ma L., Glazier S. L., Cormier M. M. E., Genovese M., Buteau S., Cameron A., Stark J. E., Dahn J. R. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. J. Electrochem. Soc., 2019, vol. 166, pp. A3031–A3044.

115. Taskovic T., Thompson L. M., Eldesoky A., Lumsden M. D., Dahn J. R. Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells : Vinylene Carbonate and Ethylene Sulfate. J. Electrochem. Soc., 2021, vol. 168, no. 1, article no. 010514.

116. Petibon R., Aiken C. P., Sinha N. N., Burns J. C., Ye H., VanElzen C. M., Jain G., Trussler S., Dahn J. R. Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells. J. Electrochem. Soc., 2013, vol. 160, pp. A117–A124.

117. Duong M. V., Tran M. V., Garg A., Nguyen H. V., Huynh T. T. K., Le M. L. P. Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell. Int. J. Energy Res., 2021, vol. 45, pp. 4133–4144.

118. Shi J., Ding L., Wan Y., Mi L., Chen L., Yang D., Hu Y., Chen W. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J. Energy Chem., 2021, vol. 57, pp. 650–655.

Текст в формате PDF:
(downloads: 74)