Для цитирования:
Кулова Т. Л., Скундин А. М. Проблемы развития литий-ионных аккумуляторов в мире и России // Электрохимическая энергетика. 2023. Т. 23, вып. 3. С. 111-120. DOI: 10.18500/1608-4039-2023-23-3-111-120, EDN: LQUIWI
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 188)
Язык публикации:
русский
Рубрика:
Тип статьи:
Научная статья
УДК:
544.6:621.355
EDN:
LQUIWI
Проблемы развития литий-ионных аккумуляторов в мире и России
Авторы:
Кулова Татьяна Львовна, Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Скундин Александр Мордухаевич, Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Аннотация:
Проведен краткий анализ современного состояния развития литий-ионных аккумуляторов в мире и в России. Сделан вывод, что масштаб производства литий-ионных аккумуляторов в России составляет сотые доли процента от мирового производства. Прогнозируется, что к 2030 году доля российских литий-ионных аккумуляторов может возрасти до 0.2% от мирового уровня.
Ключевые слова:
Список источников:
- Hanne Flåten Andersen. Current and future trends within lithium-ion battery chemistry. BATMAN webinar (May 10, 2021), pp. 5. Available at: https://www.eydecluster.com/media/24747/210510_batman_webinar_ife.pdf (accessed June 18, 2023).
- Grey C. P., Hall D. S. Prospects for lithium-ion batteries and beyond – a 2030 vision. Nat. Commun., 2020, vol. 11, pp. 6279–6282. https://doi.org/10.1038/s41467-020-19991-4
- Zubi G. Dufo-López R., Carvalho M., Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renewable Sustainable Energy Rev., 2018, vol. 89, pp. 292–308. https://doi.org/10.1016/j.rser.2018.03.002
- Kim T., Song W., Son D.-Y., Ono L. K., Qi Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A, 2019, vol. 7, pp. 2942–2964. https://doi.org/10.1039/c8ta10513h
- Qian J., Liu L., Yang J., Li S., Wang X., Zhuang H. L., Lu Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun., 2018, vol. 9, pp. 4918–4928. https://doi.org/10.1038/s41467-018-07296-6
- Kalluri S., Yoon M., Jo M., Park S., Myeong S., Kim J., Dou S. X., Guo Z., Cho J. Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells. Adv. Energy Mater., 2016, vol. 7, article no. 1601507. https://doi.org/10.1002/aenm.201601507
- Kong J.-Z., Xu L.-P., Wang C.-L., Jiang Y.-X., Cao Y.-Q., Zhou F. Facile coating of conductive poly(vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery. J. Alloys Compd., 2017, vol. 719, pp. 401–410. https://doi.org/10.1016/j.jallcom.2017.05.184
- Zhu W., Huang X., Liu T., Xie Z., Wang Y., Tian K., Bu L., Wang H., Gao L., Zhao J. Ultrathin Al2O3 Coating on LiNi0.8Co0.1Mn0.1O2 Cathode Material for Enhanced Cycleability at Extended Voltage Ranges. Coatings, 2019, vol. 9, article no. 92. https://doi.org/10.3390/coatings9020092
- Weigel T., Schipper F., Erickson E. M., Susai F. A., Markovsky B., Aurbach D. Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations. ACS Energy Lett., 2019, vol. 4, pp. 508–516. https://doi.org/10.1021/acsenergylett.8b02302
- Zhong W. W., Huang J., Liang S., Liu J., Li Y., Cai G., Jiang Y., Liu J. New Prelithiated V2O5 Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power. ACS Energy Lett., 2020, vol. 5, pp. 31–38. https://doi.org/10.1021/acsenergylett.9b02048
- Fan X., Hu E., Ji X., Zhu Y., Han F., Hwang S., Liu J., Bak S., Ma Z., Gao T., Liou S., Bai J., Yang X.-Q., Mo Y., Xu K., Su D., Wang C. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun., 2018, vol. 9, pp. 2324–2335. https://doi.org/10.1038/s41467-018-04476-2
- Ni Q., Zheng L., Bai Y., Liu T., Ren H., Xu H., Wu C., Lu J. An Extremely Fast Charging Li3V2(PO4)3 Cathode at a 4.8 V Cutoff Voltage for Li-Ion Batteries. ACS Energy Lett., 2020, vol. 5, pp. 1763–1770. https://dx.doi.org/10.1021/acsenergylett.0c00702
- Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim. Acta, 2017, vol. 230, pp. 479–491. https://doi.org/10.1016/j.electacta.2017.02.009
- Yuan M., Liu H., Ran F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today, 2023, vol. 63, pp. 360–379. https://doi.org/10.1016/j.mattod.2023.02.007
- Lu K., Hu Z., Ma J., Ma H., Dai L., Zhang J. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun., 2017, vol. 8, pp. 527–536. https://doi.org/10.1038/s41467-017-00649-7
- Wu C., Hu M., Yan X., Shan G., Liu J., Yang J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater., 2021, vol. 36, pp. 347–354. https://doi.org/10.1016/j.ensm.2021.01.016
- Zhang X., Zhou W., Zhang M., Yang Z., Huang W. Superior performance for lithium-ion battery with organic cathode and ionic liquid electrolyte. J. Energy Chem., 2021, vol. 52, pp. 28–32. https://doi.org/10.1016/j.jechem.2020.04.053
- Yu Q., Tang W., Hu Y., Gao J., Wang M., Liu S., Lai H., Xu L., Fan C. Novel low-cost, high-energy-density (>700 Wh⋅kg−1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J., 2021, vol. 415, article no. 128509. https://doi.org/10.1016/j.cej.2021.128509
- Slesarenko A. A., Baymuratova G. R., Yakuschenko I. K., Tulibaeva G. Z., Vasil’ev S. G., Yudina A. V., Troshin P. A., Shestakov A. F., Yarmolenko O. V. New organic electrode materials for lithium batteries produced by condensation of cyclohexanehexone with p-phenylenediamine. Synth. Met., 2022, vol. 289, article no. 117113. https://doi.org/10.1016/j.synthmet.2022.117113
- Gu Y., Yang S., Zhu G., Yuan Y., Qu Q., Wang Y., Zheng H. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim. Acta, 2018, vol. 269, pp. 405–414. https://doi.org/10.1016/j.electacta.2018.02.168
- Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett., 2011, vol. 11, pp. 2949–2954. https://doi.org/10.1021/nl201470j
- Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun., 2013, vol. 4, pp. 1943–1948. https://doi.org/10.1038/ncomms2941
- Jia H., Zheng J., Song J., Luo L., Yi R., Estevez L., Zhao W., Patel R., Li X., Zhang J.-G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, vol. 50, pp. 589–597. https://doi.org/10.1016/j.nanoen.2018.05.048
- He D., Li P., Wang W., Wan Q., Zhang J., Xi K., Ma X., Liu Z., Zhang L., Qu X. Collaborative Design of Hollow Nanocubes, In Situ Cross-Linked Binder, and Amorphous Void@SiOx@C as a Three-Pronged Strategy for Ultrastable Lithium Storage. Small, 2019, vol. 15, article no. 1905736. https://doi.org/10.1002/smll.201905736
- Wu H., Chan G., Choi J. W., Ryu I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 2012, vol. 7, pp. 310–315. https://doi.org/10.1038/NNAN~O.2012.35
- Kulova T. L., Skundin A. M., Gavrilin I. M. Electrodes of Germanium and Germanium Phosphide Nanowires in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ. J. Electrochem., 2022, vol. 58, pp. 855–868. https://doi.org/10.1134/S1023193522100081
- Wu S., Han C., Iocozzia J., Lu M., Ge R., Xu R., Lin Z. Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed., 2016, vol. 55, no. 28, pp. 7898–7922. https://doi.org/10.1002/anie.201509651
- Klavetter K. C., Wood S. M., Lin Y.-M., Snider J. L., Davy N. C., Chockla A. M., Romanovicz D. K., Korgel B. A., Lee J.-W., Heller A., Mullins C. B. A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources, 2013, vol. 238, pp. 123–136. https://doi.org/10.1016/j.jpowsour.2013.02.091
- Gavrilin I. M., Kudryashova Yu. O., Kuz’mina A. A., Kulova T. L., Skundin A. M., Emets V. V., Volkov R. L., Dronov A. A., Borgardt N. I., Gavrilov S. A. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanalyt. Chem., 2021, vol. 888, article no. 115209. https://doi.org/10.1016/j.jelechem.2021.115209
- Kulova T. L., Skundin A. M. Renaissance of lithium electrode. Electrochemical Energetics, 2023, vol. 23, no. 2, pp. 57–79 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-2-57-79
- Heubner C., Maletti S., Auer H. Hüttl J., Voigt K., Lohrberg O., Nikolowski K., Partsch M., Michaelis A. From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Adv. Funct. Mater., 2021, vol. 31, article no. 2106608. https://doi.org/10.1002/adfm.202106608
- Yang Y., Davies D. M., Yin Y., Borodin O., Lee J. Z., Fang C., Olguin M., Zhang Y., Sablina E. S., Wang X., Rustomji C. S., Meng Y. S. High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 2019, vol. 3, pp. 1986–2000. https://doi.org/10.1016/j.joule.2019.06.008
- Saal A., Hagemann T., Schubert U. S. Polymers for Battery Applications–Active Materials, Membranes, and Binders. Adv. Energy Mater., 2020, vol. 10, article no. 2001984.
- Voropaeva D. Yu., Novikova S. A., Kulova T. L., Yaroslavtsev A. B. Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents. Ionics, 2018, vol. 24, pp. 1685–1692. https://doi.org/10.1007/s11581-017-2333-1
- Verkhneufaleiskii zavod Uralelement (Verkhneufalei plant Uralelement. Site). Available at: https://www.uralelement.ru/ (accessed June 18, 2023).
- JSC “Energiya”. (Site). Available at: https://www.jsc-energiya.com/ (accessed June 18, 2023).
- Rosatom started construction of Russia’s first “gigafactory” of energy storage devices in the Kaliningrad region. Nauchno-delovoi portal “Atomnaya energiya 2.0” (Scientific and business portal “Nuclear Energy 2.0”. Site). Available at: https://www.atomic-energy.ru/news/2022/10/14/129293 (accessed June 18, 2023).
Поступила в редакцию:
27.07.2023
Принята к публикации:
15.09.2023
Опубликована:
29.09.2023