Для цитирования:
Мещерякова М. О., Филиппова М. В., Бурыгин Г. Л., Казаринов И. А. Кислородный биокатод на основе laccase Pleurotus ostreatus HK-35 для биотопливного элемента // Электрохимическая энергетика. 2024. Т. 24, вып. 1. С. 38-49. DOI: 10.18500/1608-4039-2024-24-1-38-49, EDN: IAJGYL
Кислородный биокатод на основе laccase Pleurotus ostreatus HK-35 для биотопливного элемента
Сокращение зависимости от ископаемого топлива и снижение загрязнений – это основные тенденции, заставляющие человечество искать новые источники энергии. Обработка сточных вод с помощь микробных топливных элементов – область, в которой две эти цели могут быть совмещены. Микробные топливные элементы, в которых микроорганизмы являются катализаторами процесса окисления органических веществ, представляют собой новую и перспективную альтернативу для производства электроэнергии. Важной проблемой таких систем является создание эффективного катода. Естественно, в указанных приложениях перспективным катодом является кислородный (воздушный) электрод.
В данной работе представлены исследования кислородного биокатода на основе фермента laccase Pleurotus ostreatus HK-35 в зависимости от способа его иммобилизации на поверхности углеграфитового электрода и природы электролита. Экспериментально установлено, что эффективным методом иммобилизации лакказы на поверхности углеграфитового электрода является введение её с помощью золь-гель матрицы. Показано, что более эффективная работа биокатода на основе лакказы наблюдается в фосфатно-цитратном (рН 4.0) буферном растворе, т. е. в кислой среде.
- Logan E., Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies // Science. 2012. Vol. 337. P. 686–690. https://doi.org/10.1126/science.1217412
- Largus T. Angenent, Khursheed Karim, Muthanna H. Al-Dahhan, Brian A. Wrenn, Rosa Domiguez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater // TRENDS in Biotechnology. 2004. Vol. 22, № 9. P. 478–485. https://doi.org/10.1016/j.tibtech.2004.07.001
- Казаринов И. А., Мещерякова М. О., Сверчкова Л. В., Олискевич В. В., Севостьянов В. П. Моделирование процесса очистки сточных вод, содержащих органические вещества, с помощью микробных биоэлектрохимических технологий // Электрохимическая энергетика. 2018. Т. 18, № 4. С. 199–210. https://doi.org/10.18500/1608-4039-2018-18-4-199-210
- Мещерякова М. О., Дронникова К. С., Казаринов И. А. Разработка эффективного электрокатализатора для катода микробного топливного элемента // Современные проблемы теоретической и экспериментальной химии : межвуз. сб. науч. тр. XV Вcерос. конф. молодых ученых с международ. участием. Саратов : Изд" во «Саратовский источник», 2021. С. 250–252.
- Zhang L., Liu C., Zhuang L., Li W., Zhou S., Zhang J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells // Biosensors and Bioelectronics. 2009. Vol. 24, № 9. P. 2825–2829. https://doi.org/10.1016/j.bios.2009.02.010
- Богдановская В. А., Капустин А. В., Тарасевич М. Р., Кузнецова Л. Н. Структура и свойства полимерных биокомпозитных материалов // Электрохимия. 2004. Т. 40. С. 352–358. https://doi.org/10.1023/B:RUEL.0000019670.07470.af
- Генералова К. Н., Минькова А. Н., Олонцев В. Ф. Адсорбция клеток бактерий на углеродных сорбентах // Вестник ПНИПГ. Химическая технология и биотехнология. 2014. № 2. С. 53–62.
- Аркадьева И. Н., Фокина Е. А., Василенко В. А., Кольцова Э. М. Математическая модель адсорбции лакказы на углеродном носителе при конструировании катода биотопливного элемента // Успехи в химии и химической технологии. 2017. Т. 31, № 8. С. 87–89. https://doi.org/10.3303/CET1870269
- Kamanina O. A., Saverina E. A., Rybochkin P. V., Arlyapov V. A., Vereshchagin A. N., Ananikov V. P. Preparation of hybrid sol-gel materials based on living cells of microorganisms and their application in nanotechnology // Nanomaterials. 2022. Vol. 12, № 7. P. 1086–1119. https://doi.org/10.3390/nano12071086