ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Meshherjakova M. O., Filippova M. V., Burygin G. L., Kazarinov I. A. Oxygen biocathode based on laccase Pleurotus ostreatus HK-35 for biofuel cell. Electrochemical Energetics, 2024, vol. 24, iss. 1, pp. 38-49. DOI: 10.18500/1608-4039-2024-24-1-38-49, EDN: IAJGYL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 53)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.136
EDN: 
IAJGYL

Oxygen biocathode based on laccase Pleurotus ostreatus HK-35 for biofuel cell

Autors: 
Meshherjakova Marija Olegovna, Saratov State University
Filippova Margarita Viktorovna, Saratov State University
Burygin Gennadiy Leonidovich, Institute of Biochemistry and Physiology of Plants and Microorganisms of RAS
Kazarinov Ivan Alekseevich, Saratov State University
Abstract: 

The main reasons that make mankind look for new sources of energy are decreasing dependence on fossil fuels and reducing pollution. Wastewater treatment with the help of microbial fuel cells is an area where these two goals can be combined. Microbial fuel cells, in which microorganisms catalyze the oxidation of organic substances, represent a new and promising alternative for electricity generation. The creation of an efficient cathode in such systems is the important problem. It is evident that in these applications an oxygen (air) electrode is a promising cathode. In this study, the oxygen biocathode based on the laccase enzyme Pleurotus ostreatus HK-35 was developed and its electrochemical properties were studied depending on the immobilization method of the enzyme on the surface of a carbon-graphite electrode and the type of the electrolyte.

It was experimentally established that laccase injection using a sol-gel matrix was the effective method for immobilizing laccase on the surface of a carbon-graphite electrode. It was shown that the more efficient operation of the laccase-based biocathode was observed in a phosphate-citrate (pH 4.0) buffer solution, i.e., in an acidic environment.

Reference: 
  1.  Logan E., Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science, 2012, vol. 337, pp. 686–690. https://doi.org/10.1126/science.1217412
  2.  Largus T. Angenent, Khursheed Karim, Muthanna H. Al-Dahhan, Brian A. Wrenn, Rosa Domiguez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 2004, vol. 22, no. 9, pp. 478–485. https://doi.org/10.1016/j.tibtech.2004.07.001
  3.  Kazarinov I. A., Meshcheryakova M. O., Sverchkova L. V., Oliskevich V. V., Sevostyanov V. P. Modelling of the Wastewater Treatment Process Using Microbial Bioelectrochemical Technologies. Electrochemical Energetics, 2018, vol. 18, no. 4, pp. 199–210 (in Russian). https://doi.org/10.18500/1608-4039-2018-18-4-199-210
  4.  Meshcheryakova M. O., Dronnikova K. S., Kazarinov I. A. Development of an efficient electrocatalyst for a microbial fuel cell cathode. Sovremennye problemy theoreticheskoy i eksperimentalnoy khimii: mezhvuz. sb. nauch. tr. XV Vseros. konf. molodykh uchenykh s mezhdunarod. uchastiem [Modern Problems of Theoretical and Experimental Chemistry: Interuniversity collection of scientific papers of the XV All-Russian Conference of young scientists with international participation]. Saratov, Izd-vo “Saratovskiy istochnik”, 2021, pp. 250–252 (in Russian).
  5.  Zhang L., Liu C., Zhuang L., Li W., Zhou S., Zhang J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and Bioelectronics, 2009, vol. 24, no. 9, pp. 2825–2829. https://doi.org/10.1016/j.bios.2009.02.010
  6.  Bogdanovskaya V. A., Kapustin A. V., Tarasevich M. R., Kuznetsova L. N. Structure and Properties of Polymer Biocomposite Materials. Russian Journal of Electrochemistry, 2004, vol. 40, no. 3, pp. 311–317. https://doi.org/10.1023/B:RUEL.0000019670.07470.af
  7.  Generalova K. N., Minkova A. A., Olontsev V. F. Adsorption of bacterial cells on carbon sorbents. Vestnik PSTU. Chemical Technology and Biotechnology, 2014, no. 2, pp. 53–62 (in Russian).
  8.  Arkadeva I. N., Fokina E. A., Vasilenko V. A., Koltsova E. M. Matematical model of the laccase adsorption on the carbon support at construction of the enzymatic fuel cell cathode. Advances in Chemistry and Chemical Technology, 2017, vol. 31, no. 8, pp. 87–89 (in Russian). https://doi.org/10.3303/CET1870269
  9.  Kamanina O. A., Saverina E. A., Rybochkin P. V., Arlyapov V. A., Vereshchagin A. N., Ananikov V. P. Preparation of hybrid sol-gel materials based on living cells of microorganisms and their application in nanotechnology. Nanomaterials, 2022, vol. 12, no. 7, pp. 1086–1119. https://doi.org/10.3390/nano12071086
Received: 
10.01.2024
Accepted: 
12.03.2024
Published: 
29.03.2024