ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Koshkina A. A., Yaroslavtseva T. V., Urusova N. V., Reznizkikh O. G., Khrustalev M. A., Nefedova K. V., Zhuravlev V. D., Bushkova O. V. Lithium borates as a surface protective layer for lithium-manganese spinel. Electrochemical Energetics, 2024, vol. 24, iss. 2, pp. 88-102. DOI: 10.18500/1608-4039-2024-24-2-88-102, EDN: BXJTPZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 0)
Language: 
Russian
Article type: 
Article
UDC: 
544.636+544.638
EDN: 
BXJTPZ

Lithium borates as a surface protective layer for lithium-manganese spinel

Autors: 
Koshkina Anastasia A., Institute of Solid State Chemistry
Yaroslavtseva Tatiana V., Institute of Solid State Chemistry
Urusova Natalia V., Institute of Solid State Chemistry
Reznizkikh Olga G., Institute of Solid State Chemistry
Khrustalev Mikhail A., Peter the Great St. Petersburg Polytechnic University
Nefedova Kseniya Valer'evna, Institute of Solid State Chemistry
Zhuravlev Viktor Dmitrievich, Institute of Solid State Chemistry
Bushkova Ol'ga Viktorovna, Institute of Solid State Chemistry
Abstract: 

The protective properties of the coating applied to the surface of lithium-manganese spinel (LiMn2O4), using the eutectic composition of Li2O : B2O3 = 47 : 53 (wt.) with the melting point of 650°C, were studied. The content of the eutectic lithium borate varied from 1% to 10%. The electrochemical behavior of the obtained materials in the cathode half-cells of lithium-ion battery was studied at room temperature. It was shown that an abnormally large decrease in the specific capacity of lithium-manganese spinel took place simultaneously with the stabilizing effect. The side chemical reactions that occur between LiMn2O4 and the eutectic lithium borate during annealing while applying a protective layer were analyzed. The chemical stability of lithium-manganese spinel (LiMn2O4) and the manganese-containing solid solution with the layered structure, LiNi1/3Mn1/3Co1/3O2, with respect to enriched lithium borates, was compared.

Acknowledgments: 
The work was carried out in accordance with the state assignment for the Institute of Solid State Chemistry of the Ural Brunch of the Russian Academy of Sciences (registration no. NIOKTR 124020600047-4 and 124020600004-7).
Reference: 
  1. Kulova T. L., Skundin A. M. Problems of development of lithium-ion batteries all over the world and in Russia. Electrochemical Energetics, 2023, vol. 23, no. 3, pp. 111–120. https://doi.org/10.18500/1608-4039-2023-23-3-111-120 (in Russian).
  2. Zubi G., Dufo-López R., Carvalho M., Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renewable Sustainable Energy Rev., 2018, vol. 89, pp. 292–308. https://doi.org/10.1016/j.rser.2018.03.002
  3. Yi T.-F., Zhu Y.-R., Zhu X.-D., Shu J., Yue C.- B., Zhou A.-N. A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics, 2009, vol. 15, pp. 779– 784. https://doi.org/10.1007/s11581-009-0373-x
  4. Huang Y., Dong Y., Li S., Lee J., Wang C., Zhu Z., Xue W., Li Y., Li J. Lithium manganese spinel cathodes for lithium-ion batteries. Adv. Energy Mater., 2020, vol. 11, iss. 2, article no. 2000997. https://doi.org/10.1002/aenm.202000997
  5. Zuo D., Tian G., Li X., Chen D., Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J. Alloys Compd., 2017, vol. 706, pp. 24–40. https://doi.org/10.1016/j.jallcom.2017.02.230
  6. Kulova T. L., Skundin A. M. Temperature effects on the performance of lithium-ion and sodium-ion batteries. Russ. J. Electrochem., 2021, vol. 57, iss. 7, pp. 700–705. https://doi.org/10.1134/S1023193521070089
  7. Hettesheimer T., Neef C., Rosellón Inclán I., Link S., Schmaltz T., Schuckert F., Stephan A., Stephan M., Thielmann A., Weymann L., Wicke T. Lithium-ion battery roadmap – industrialization perspectives towards 2030. Karlsruhe, Germany, Fraunhofer Institute for systems and innovation research, 2023. 105 p. https://doi.org/10.24406/publica-2153
  8. Zhang L., Yabu T., Taniguchi I. Synthesis of spherical nanostructured LiMxMn2−xO4 (M = Ni2+ , Co3+ and Ti4+ ; 0< x <0.2) via a singlestep ultrasonic spray pyrolysis method and their high rate charge–discharge performances. Mat. Res. Bull., 2009, vol. 44, pp. 707–713. https://doi.org/10.1016/j.materresbull.2008.06.017
  9. Park O. K., Cho Y., Lee S., Yoo H.-Ch., Cho J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci., 2011, vol. 4, pp. 1621– 1633. https://doi.org/10.1039/C0EE00559B
  10. Cho J., Thackeray M. M. Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling. J. Electrochem. Soc., 1999, vol. 146, iss. 10, pp. 3577–3581. https://doi.org/10.1149/1.1392517
  11. Zhuravlev V. D., Shchekoldin S. I., Andryushin S. E., Sherstobitova E. A., Nefedova K. V., Bushkova O. V. Electrochemical characteristics and phase composition of lithium-manganese oxide spinel with excess lithium Li1+xMn2O4. Electrochemical Energetics, 2020, vol. 20, no. 3, pp. 157–170. https://doi.org/10.18500/1608-4039-2020-20-3-157-170 (in Russian).
  12. Xia Y., Zhou Y., Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc., 1997, vol. 144, iss. 8, pp. 2593–2600. https://doi.org/10.1149/1.1837870
  13. Bhandari A., Bhattacharya J. Manganese dissolution from spinel cathode: Few unanswered questions. J. Electrochem. Soc., 2016, vol. 164, pp. A106–A127. https://doi.org/10.1149/2.0101614jes
  14. Sycheva V. O., Churikov A. V. The lithiummanganese spinels: The methods of enhancement of their stability and power intensity. Electrochemical Energetics, 2009, vol. 9, no. 4, pp. 175–187. https://doi.org/10.18500/1608-4039-2009-9-4-175-187 (in Russian).
  15. Koshkina A. A., Yaroslavtseva T. V., Ukshe A. Kuznetsov M. V., Surikov V. T., Bushkova O. V. Surface degradation of lithium–manganese spinel in contact with lithium-hexafluorophosphate-containing electrolyte solution. Russ. J. Electrochem., 2024, vol. 60, iss. 4, pp. 263–282. https://doi.org/10.1134/S1023193524040049
  16. Li C., Zhang H. P., Fu L. J., Liu H., Wu Y. P., Rahm E., Holze R., Wu H. Q. Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, vol. 51, iss. 19, pp. 3872–3883. https://doi.org/10.1016/j.electacta.2005.11.015
  17. Nisar U., Muralidharan N., Essehli R., Amin R., Belharouak I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater., 2021, vol. 38, pp. 309–328. https://doi.org/10.1016/j.ensm.2021.03.015
  18. Ito Y., Miyauchi K., Oi T. Ionic conductivity of Li2O-B2O3 thin films. J. Non-Cryst. Solids, 1983, vol. 57, pp. 389–400.
  19. Jinlian L., Xianming W., Shang C. H. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Bull. Mater. Sci., 2013, vol. 36, iss. 4, pp. 687–691. https://doi.org/10. 1007/s12034-013-0513-9
  20. Chan H.-W., Duh J.-G., Sheen S.-R. Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery. Surface and Coatings Technology, 2004, vol. 188– 189, pp. 116–119. https://doi.org/10.1016/j.surfcoat.2004.08.065
  21. Şahan H., Göktepe H., Patat Ş., Ülgen A. The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material. Solid State Ionics, 2008, vol. 178, pp. 1837–1842. https://doi.org/10.1016/j.ssi.2007.11.024
  22. Zhu R., Zhang S., Guo Q., Zhou Y., Li J., Wang P., Gong Z. More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials. Electrochimica Acta, 2020, vol. 324, article no. 136074. https://doi.org/10.1016/j.electacta.2020.136074
  23. Ying J., Wan C., Jiang C. Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J. Power Sources, 2001, vol. 102, iss. 1– 2, pp. 162–166. https://doi.org/10.1016/S0378-7753(01)00795-9
  24. Chen S., Chen L., Li Y., Su Y., Lu Y., Bao L., Wang J., Wang M., Wu F. Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl. Materials and Interfaces, 2017, vol. 9, iss. 10, pp. 8641–8648. https://doi.org/10.1021/acsami.6b13995
  25. Zhuravlev V. D., Nefedova K. V., Evshchik E. Yu., Sherstobitova E. A., Kolmakov V. G., Dobrovolsky Yu. A., Porotnikova N. M., Korchun A. V., Shikhovtseva A. V. Effect of lithium borate coating on the electrochemical properties of LiCoO2 electrode for lithiumion batteries. Chimica Techno Acta, 2021, vol. 8, iss. 1, article no. 20218101. https://doi.org/10.15826/chimtech.2021.8.1.01
  26. Nefedova K. V., Zhuravlev V. D., Yagodin V. V., Kuznetsov M. V., Skachkov V. M., Bushkova O. V., Murzakaev A. M., Evshchik E. Y. The effect of the lithium borate surface layer on the electrochemical properties of the lithium-ion battery positive electrode material LiNi1/3Mn1/3Co1/3O2. Russ. J. Electrochemistry, 2021, vol. 57, iss. 11, pp. 1055–1069. https://doi.org/10.1134/S1023193521100104
  27. Chan H. W., Duh J. G., Sheen S. R. Microstructure and electrochemical properties of LBOcoated Li-excess Li1+xMn2O4 cathode material at elevated temperature for Li-ion battery. Electrochimica Acta, 2006, vol. 51, iss. 18, pp. 3645–3651. https://doi.org/10.1016/j.electacta.2005.10.018
  28. Chan H. W., Duh J. G., Sheen S. R. Surface treatment of the lithium boron oxide coated LiMn2O4 cathode material in Li-ion battery. Key Eng. Mater., 2007, vol. 280–283, pp. 671–676. https://doi.org/10.4028/www.scientific.net/kem.280-283.671
  29. Choi S. H., Kim J. H., Ko Y. N., Kang Y. Ch. Electrochemical properties of boron-doped LiMn2O4 nanoparticles covered with glass material prepared by high temperature flame spray pyrolysis. Int. J. Electrochem. Sci., 2013, vol. 8, pp. 1146–1162. https://doi. org/10.1016/S1452-3981(23)14087-9
  30. Amatucci G., Blyr A., Sigala C., Alfonse P., Tarascon J. Surface treatments of Li1+xMn2−xO4 spinels for improved elevated temperature performance. Solid State Ionics, 1997, vol. 104, iss. 1–2, pp. 13–25. https://doi.org/10.1016/s0167-2738(97)00407-4
  31. Choi S. H., Kim J. H., Ko Y. N., Hong Y. J., Kang Y. C. Electrochemical properties of Li2O-2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process. J. Power Sources, 2012, vol. 210, pp. 110–115. https://doi.org/10.1016/j.jpowsour.2012.03.016
  32. Galakhov F. Ya. Diagrammy sostojanija sistem tugoplavkikh oksidov: spravochnik. Vyp. 5. Dvojnye sistemy. Ch. I [State diagrams of refractory oxide systems: Handbook. Vol. 5. Dual systems. Part I]. Leningrad, Nauka, 1985. 284 p. (in Russian).
  33. Rousse G., Baptiste B., Lelong G. Crystal Structures of Li6B4O9 and Li3B11O18 and application of the dimensional reduction formalism to lithium dorates. Inorg. Chem., 2014, vol. 53, iss. 12, pp. 6034–6041. https://doi.org/10.1021/ic500331u
  34. Zhuravlev V. D., Pachuev A. V., Nefedova K. V., Ermakova L. V. Solution-combustion synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. Int. J. Self-Propagating High-Temp. Synth., 2018, vol. 27, iss. 3, pp. 154–161. https://doi.org/10.3103/S1061386218030147
  35. Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 1993, vol. 192, iss. 1–2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I
  36. Ma S., Noguchi H., Yoshio M. An observation of peak split in high temperature CV studies on Li-stoichiometric spinel LiMn2O4 electrode. J. Power Sources, 2004, vol. 125, iss. 2, pp. 228–235. https://doi.org/10.1016/j.jpowsour.2003.08.010
  37. Lee Y. S., Hideshima Y., Sun Y. K., Yoshio M. The effects of lithium and oxygen contents inducing capacity loss of the LiMn2O4 obtained at high synthetic temperature. J. Electroceramics, 2002, vol. 9, pp. 209– 214. https://doi.org/10.1023/a:1023221410721.
  38. Veluchamy A. Boron-substituted manganese spinel oxide cathode for lithium ion battery. Solid State Ionics, 2001, vol. 143, iss. 2, pp. 161–171. https://doi.org/10.1016/s0167-2738(01)00856-6
  39. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B, 1969, vol. 25, iss. 5, pp. 925–946. https://doi.org/10.1107/s0567740869003220.
  40. Gao S., Shi B., Liu J., Wang L., Zhou C., Guo C., Zhang J., Li W. Boron doping and LiBO2 coating synergistically enhance the high-rate performance of LiNi0.6Co0.1Mn0.3O2 cathode materials. ACS Sustain. Chem. Eng., 2021, vol. 9, iss. 15, pp. 5322–5333. https://doi.org/10.1021/acssuschemeng.0c09265
  41. Zhang X.-D., Shi J.-L., Liang J.-Y., Wang L.-P., Yin Y.-X., Jiang K.-C., Guo Y.-G. An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. J. Power Sources, 2019, vol. 426, pp. 242–249. https://doi.org/10.1016/j.jpowsour.2019.04.017
  42. Han C.-G., Zhu C., Saito G., Akiyama T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+− rich phase for rechargeable lithium-ion batteries. Electrochimica Acta, 2016, vol. 209, pp. 225–234. https://doi.org/10.1016/j.electacta.2016.05.075
  43. Xiong L., Xu Y., Tao T., Song J., Goodenough J. B. Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 24563–24568. https://doi.org/10.1039/C2JM34717B
  44. Ferreira E., Lima M., Zanotto E. DSC method for determining the liquidus temperature of glassforming systems. J. Am. Ceram. Soc., 2010, vol. 93, pp. 3757–3763. https://doi.org/10.1111/j.1551-2916.2010.03976.x/
  45. Skvortsova I. A., Orlova E. D., Boev A. O., Aksyonov D. A., Moiseev I., Pazhetnov E. M., Savina A. A., Abakumov A. M. Comprehensive analysis of boron-induced modification in LiNi0.8Mn0.1Co0.1O2 positive electrode material for lithium-ion batteries. J. Power Sources, 2023, vol. 583, article no. 233571. https://doi.org/10.1016/j.jpowsour.2023.233571

 

Received: 
29.03.2024
Accepted: 
03.06.2024
Published: 
28.06.2024