ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


electrolyzers

Study of electrode materials based on La0.65Ca0.35Co0.2Fe0.8 – xNixO1 – δ oxides used in solid oxide fuel cells and electrolyzers

The effect of iron substitution with nickel cations in La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ oxide on the structural and transport properties of electrode materials for solid oxide fuel cells and electrolyzers was studied in this work. It was shown that Ni3+ cations isomorphically replace Fe3+ /Fe4+ cations in the structure of perovskite. The total conductivity of La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ (x = 0, 0.05) materials was measured in air in the temperature range from 100 to 850°C using the Van der Pauw method.

Quasi-equilibrium oxygen release from oxides used as electrodes in solid oxide fuel cells and electrolyzers

The dependence of oxygen stoichiometry on the oxygen partial pressure and the temperature for La- and Nb-doped strontium ferrite La0.4Sr0.6Fe0.95Nb0.05O3 – δ (LSFNb5) was studied by quasi-equilibrium oxygen release (QEOR) method. The equilibrium diagram in the coordinates “T – lg(pO2 ) – 3 – δ” in the temperature range of 700–900°C and oxygen partial pressures pO2 = 10–4 – 0.2 atm was obtained. The range of stoichiometry deviation was determined, and the thermodynamic parameters of the oxygen release process were analyzed.