For citation:
Khokhlova M. О., Shubnikova E. V., Bragina O. A., Nemudry A. P., Cherendina O. V. Study of electrode materials based on La0.65Ca0.35Co0.2Fe0.8 – xNixO1 – δ oxides used in solid oxide fuel cells and electrolyzers. Electrochemical Energetics, 2025, vol. 25, iss. 4, pp. 168-172. DOI: 10.18500/1608-4039-2025-25-4-168-172, EDN: CSHVQR
Study of electrode materials based on La0.65Ca0.35Co0.2Fe0.8 – xNixO1 – δ oxides used in solid oxide fuel cells and electrolyzers
The effect of iron substitution with nickel cations in La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ oxide on the structural and transport properties of electrode materials for solid oxide fuel cells and electrolyzers was studied in this work. It was shown that Ni3+ cations isomorphically replace Fe3+ /Fe4+ cations in the structure of perovskite. The total conductivity of La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ (x = 0, 0.05) materials was measured in air in the temperature range from 100 to 850°C using the Van der Pauw method. Nickel doping results in improving of the total conductivity without changing the activation energy values.
- Tarutin A. P., Filonova E. A., Ricote S., Medvedev D. A., Shao Z. Chemical design of oxygen electrodes for solid oxide electrochemical cells: A guide. Sustain. Energy Technol. Assess., 2023, vol. 57, art. 103185. https://doi.org/10.1016/j.seta.2023.103185
- Taylor F. H., Buckeridge J., Catlow C. R. A. Screening divalent metals for A- and B-site dopants in LaFeO3. Chem. Mater., 2017, vol. 29, pp. 8147–8157. https://doi.org/10.1021/acs.chemmater.7b01993
- Song J., Ning D., Bouwmeester H. J. M. Influence of alkaline-earth metal substitution on structure, electrical conductivity and oxygen transport properties of perovskite-type oxides La0.6A0.4FeO1−δ (A = Ca, Sr and Ba). Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 11984–11995. https://doi.org/10.1039/D0CP00247J
- Feng P., Yang K., Liu X., Zhang J., Li Z. P. A review of advanced SOFCs and SOECs: Materials, innovative synthesis, functional mechanisms, and system integration. eScience, 2025, art. 100460. https://doi.org/10.1016/j.esci.2025.100460
- Zong S., Zhao X., Jewell L. L., Zhang Y., Liu X. Advances and challenges with SOEC high temperature co-electrolysis of CO2/H2O: Materials development and technological design. Carbon Capture Sci. Techn., 2024, vol. 12, art. 100234. https://doi.org/10.1016/j.ccst.2024.100234
- Bragina O. A., Shubnikova E. V., Arapova M. V., Nemudry A. P. Mo-doped La0.4Sr0.6FeO1−δ hollow fiber membrane for air separation and methane conversion. J. Eur. Ceram. Soc., 2024, vol. 44, iss. 14, art. 116684. https://doi.org/10.1016/j.jeurceramsoc.2024.116684
- Sunarso J., Baumann S., Serra J. M., Meulenberg W. A., Liu S., Lin Y. S., Diniz da Costa J. C. Mixed ionic–electronic conducting (MIEC) ceramicbased membranes for oxygen separation. J. Memb. Sci., 2008, vol. 320, pp. 13–41. https://doi.org/10.1016/j.memsci.2008.03.074