The Prospects of Use of the Fast-Tempered Materials in Current Sources

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

For the purpose of creation of a reliable current conductor for fluorocarbon-lithium cell with use of the fast-tempered materials the corrosion and electrochemical behavior of microcrystalline AV-86 alloy and also amorphous Ni81P19 and Fe70Cr10P13C7 alloys in electrolytes on a basis γ-butyrolactone (GBL) is studied. The high corrosion resistance and conductivity of amorphous materials do perspective their use as current conductor of current sources. The corrosion and electrochemical behavior of AV-86 alloy is investigated, and also amorphous Ni81P19 and Fe70Cr10P13C7 alloys in electrolytes on the basis of GBL for the purpose of clarification of a possibility of their use as current conductor of the fluorocarbon cathode. And now AV-86 alloy which, having high corrosion resistance in GBL, welding with other structural elements the power source without destruction is represented to the most technological perspective.


1. Nizhnikovskii E. A. The use of chemical current sources for powering miniature electronic equipment. Electrochemical Energetics, 2002, vol. 2, no. 1, pp. 35–45 (in Russian).

2. Zhang S. S., Foster D., Wolfenstine J., Read J. Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell. J. Power Sources. 2009, vol. 187, no. 1, pp. 233–237.

3. Fateev S. A. Current Sources Trends for Implantable Medical Devices. Vestnik Moskovskogo energeticheskogo institute [Bulletin of the Moscow Power Energy Institute], 2018, no. 2, pp. 102–113 (in Russian).

4. Putsylov I. A., Egorov A. M., Smirnov S. E., Poliakova N. V., Fateev S. A. Investigation of the properties of cathode materials based on fluorinated carbon nanotubes. Perspektivnye materialy [Perspective materials], 2013, no. 11, pp. 29–34 (in Russian).

5. Fateev S. A., Shtolina N. V. Investigation of the persistence of Li-CFx current sources for cardiac pacemakers. Materialy XII Mezhdunarodnoi konferentsii “Fundamental’nye problemy preobrazovaniia energii v litievykh elektrokhimicheskikh sistemakh” [Proceedings of the XII International Conference “Fundamental problems of energy conversion in lithium electrochemical systems”]. Krasnodar, Kubanskii universitet, 2012, pp. 99–102 (in Russian).

6. Fateev S. A., Fialkov A. S. Effect of cathode current collection material on the characteristics of Li-CFx elements. Elektrokhimiia [Elctrochemistry], 1988, vol. 24, no. 1, pp. 123 (in Russian).

7. Ignatova A. A., Tulibaeva G. Z., Iarmolenko O. V., Fateev S. A. Electrolyte systems for primary lithium-fluorocarbon current sources and their performance over a wide temperature range. Elektrokhimiia [Electrochemistry], 2017, vol. 53, no. 3, pp. 330–339 (in Russian).

8. Serbinovskij M. Ju. Litievye istochniki toka : konstrukcii, elektrody, materialy, sposoby izgotovlenija i ustrojstva dlja izgotovlenija elektrodov [Lithium power sources : designs, electrodes, materials, ways of production and the device for production of electrodes]. Rostov on Don, Izd-vo Rost. un-ta, 2001. 155 p. (in Russian).

9. Fleischer Niles A., Ekern Ronald J. Galvanichesky interaction in couple MnO2-metall and its influence on the discharge of elements. J. Electrochem. Soc., 1985, vol. 132, no. 1, pp. 125–128.

10. Fialkov A. S. Uglerod, mezhsloevye soedineniia i kompozity na ego osnove [Carbon, interlayer compounds and composites based on it]. Moscow, Aspekt-press Publ., 1997. 720 p. (in Russian).

11. Beketaeva L. A., Rybalka K. V., Fateev S. A. Operational Impedance of a Li-CFx Type Lithium Current Source. Elektrokhimiia [Electrochemistry], 2001, vol. 37, no. 9, pp. 1150–1152 (in Russian).

12. Sudzuki K., Fudzimori Kh., Khasimoto K. Amorfnye metally. Ed. Ts. Masumoto. Moscow, Metallurgiia Publ., 1987. 328 p. (in Russian).

13. Gleiter H. Nanostructured Materials : Basic Concepts and Microstructure H. Gleiter. ActaMaterialia, 2000, vol. 48, no. 1, pp. 1–29.

14. Solntsev Iu. P., Priakhin E. I., Pirainen V. Iu. Spetsial’nye materialy v mashinostroenii [Special materials in mechanical engineering]. Saint Petersburg, Khimizdat Publ., 2004. 640 p. (in Russian).

15. Itzak D., Barona J., Gefen J. Corrosion resistance of crystal alloys of aluminum. J. Mater. Ski. Lett., 1985, vol. 4, no. 4, pp. 445.

16. Plaxotnik V. N., Tul’chinskij V. B., Varex V. V. Product of lithium tetrafluoborate for power sources. Zhurnal fizicheskoi khimii [Russian Journal of Physical Chemistry], 1973, vol. 47, no. 4, pp. 1053.

17. Fateev S. A., Denisova O. O., Monakhova I. P., Lubnin E. N., Agladze T. R. Corrosion of current collectors in Li/CFx elements. Zashchita metallov [Metal protection], 1988, vol. 24, no. 2, pp. 284–287 (in Russian).

18. Fateev S. A., Rudakov V. M. Electrochemical and chemical stability of electrolytes based on gamma-butyrolactone. Electrochemical Energetics, 2005, vol. 5, no. 4, pp. 256–260 (in Russian).

19. Denisova O. O., Shuvalova K. M., Cherny’x T. E., Fateev S. A., Nikonov V. L. Electrochemical stability of aprotic electrolytes power sources. Tezisy‘ dokladov VII Vsesoyuznoj konferencii po e‘lektroximii [Abstracts of the VII all-union conference on electrochemistry], Cherepovecz, 1988, vol. 1, pp. 62 (in Russian).

20. Kniazheva V. M., Ul’ianin E. A., Ianov L. A. Corrosion resistance and electrochemical properties ofamorphous alloys. Itogi nauki i tekhniki. Ser. Korroziia i zashchita ot korrozii [The results of the science of technology. Ser. Corrosion and corrosion protection]. Moscow, VINITI, vol. 9, 1982, pp. 225–251 (in Russian).

Full Text (PDF):
(downloads: 74)