ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gamayunova I. M. The influence of impurities of the transition metals Fe, Ni, and Co on hydrolysis kinetics of BH?? ions in alkaline solutions. Electrochemical Energetics, 2021, vol. 21, iss. 3, pp. 164-170. DOI: 10.18500/1608-4039-2021-21-3-164-170, EDN: DNPBZI

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 60)
Language: 
Russian
Article type: 
Article
EDN: 
DNPBZI

The influence of impurities of the transition metals Fe, Ni, and Co on hydrolysis kinetics of BH?? ions in alkaline solutions

Autors: 
Gamayunova Irina Mikhailovna, Saratov State University
Abstract: 

The influence of small amounts of the Fe, Co, and Ni impurities on the spontaneous hydrolytic process of borohydride was studied within a temperature range of 60–100°C. The object under study was a simulated solution containing 9.53 M of OH? ions and 0.14 M of BH4? ions, used as a fuel for borohydride fuel cells. The rate constant k of borohydride hydrolysis for a small amount of impurities at different temperature was estimated. The lowest non-accelerating concentrations of the impurities were established ( ? 10 ppm for iron? ? 1 ppm for cobalt). The strongest accelerating effect on the hydrolysis of BH4? ions was rendered by nickel impurities: self-hydrolysis was accelerated by 1.2 times for 1 ppm Ni. The ambiguous trend of the kinetic curves does not allow to accurately estimate the activation energy? however, the increased temperature enhances the catalytic effect of hydrolysis acceleration according to Arrhenius’ equation.

Reference: 

1. Ould-Amara S., Dillet J., Didierjean S., Chatenet M., Maranzana G. Operating heterogeneities within a direct borohydride fuel cell. J. Power Sources, 2019, vol. 439, article no. 227099. https://doi.org/10.1016/j.jpowsour.2019.227099

2. Lee C. J., Kim T. Hydrogen supply system employing direct decomposition of solid-state NaBH4. Int. J. Hydrogen Energy, 2015, vol. 40, iss. 5, pp. 2274–2282. https://doi.org/10.1016/j.ijhydene.2014.12.032

3. Ponce de Leon C., Walsh F. C., Pletcher D., Browning D. J., Lakeman J. B. Direct borohydride fuel cells. J. Power Sources, 2006, vol. 155, pp. 172–181. https://doi.org/10.1016/j.jpowsour.2006.01.011

4. Demirci U. B. The hydrogen cycle with the hydrolysis of sodium borohydride : A statistical approach for highlighting the scientific/technical issues to prioritize in the field. Int. J. Hydrogen Energy, 2015, vol. 40, iss. 6, pp. 2673–2691. https://doi.org/10.1016/j.ijhydene.2014.12.067

5. Wee J.-H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? J. Power Sources, 2006, vol. 161, pp. 1–10. https://doi.org/10.1016/j.jpowsour.2006.07.032

6. Demirci U. B. Direct liquid-feed fuel cells: Thermodynamic and environmental concerns. J. Power Sources, 2007, vol. 169, pp. 239–246. https://doi.org/10.1016/j.jpowsour.2007.03.050

7. Braesch G., Wang Z., Sankarasubramanian S., Oshchepkov A. G., Bonnefont A., Savinova E. R., Ramani V., Chatenet M. A High performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes. J. Mater. Chem. A, 2020, vol. 8, iss. 39, pp. 20543–20552. https://doi.org/10.1039/d0ta06405j

8. Demirci U. B., Miele P. Sodium borohydrideversus ammonia borane, in hydrogenstorage and direct fuelcell applications. Energy Environ. Sci., 2009, vol. 2, pp. 627–637. https://doi.org/10.1039/B900595A

9. Churikov A. V., Romanova V. O., Churikov M. A., Gamayunova I. M. A model of fuel transformation at discharge of direct borohydride fuel cell. International Review of Chemical Engineering, 2012, vol. 4, pp. 263–268.

10. Churikov A. V., Zapsis K. V., Khramkov V. V., Churikov M. A., Smotrov M. P., Kazarinov I. A. Phase diagrams of the ternary systems NaBH4 + NaOH + H2O, KBH4 + KOH + H2O, NaBO2 + NaOH + H2O, and KBO2 + KOH + H2O at ? 10°C. J. Chem. and Eng. Data, 2011, vol. 56, pp. 9–13. https://doi.org/10.1021/je100576m

11. Churikov A. V., Zapsis K. V., Khramkov V. V., Churikov M. A., Gamayunova I. M. Temperature-induced transformation of the phase diagrams of ternary systems NaBO2 + NaOH + H2O and KBO2 + KOH + H2O. J. Chem. and Eng. Data, 2011, vol. 56, pp. 383–389. https://doi.org/10.1021/je1007422

12. Churikov A. V., Zapsis K. V., Ivanishchev A. V., Sychova V. O. Temperature-induced transformation of the phase diagrams of ternary systems NaBH4 + NaOH + H2O and KBH4 + KOH + H2O. J. Chem. and Eng. Data, 2011, vol. 56, pp. 2543–2552. https://doi.org/10.1021/je200065s

13. Minkina V. G., Shabunya S. I., Kalinin V. I., Martynenko V. V., Smirnova A. L. Long-term stability of sodium borohydrides for hydrogen generation. Int. J. Hydrogen Energy, 2008, vol. 33, pp. 5629–5635. https://doi.org/10.1016/j.ijhydene.2008.07.037

14. Churikov A. V., Ivanishchev A. V., Gamayunova I. M., Ushakov A. V. Density calculations for (Na, K)BH4 + (Na, K)BO2 + (Na, K)OH + H2O solutions used in hydrogen power engineering. J. Chem. and Eng. Data, 2011, vol. 56, pp. 3984–3993. https://doi.org/10.1021/je200216n

15. Liu B. H., Li Z. P. A review: Hydrogen generation from borohydride hydrolysis reaction. J. Power Sources, 2009, vol. 187, pp. 527–534. https://doi.org/10.1016/j.jpowsour.2008.11.032

16. Yu L., Pellechia P., Matthews M. A. Kinetic models of concentrated NaBH4 hydrolysis. Int. J. Hydrogen Energy, 2014, vol. 39, iss. 1, pp. 442–448. https://doi.org/10.1016/j.ijhydene.2013.10.105

17. Churikov A. V., Gamayunova I. M., Zapsis K. V., Churikov M. A., Ivanishchev A. V. Influence of temperature and alkalinity on the hydrolysis rate of borohydride ions in aqueous solution. Int. J. Hydrogen Energy, 2012, vol. 37, pp. 335–344. https://doi.org/10.1016/j.ijhydene.2011.09.066

18. Zhao S., Zhang J., Chen Z., Ton Y., Shen J., Li D., Zhang M. Hydrogen generation and simultaneous removal of Cr(VI) by hydrolysis of NaBH4 using Fe-Al-Si composite as accelerator. Chemosphere, 2019, vol. 223, pp. 131–139. https://doi.org/10.1016/j.chemosphere.2019.02.050

19. Pinto A. M. F. R., Falcao D. S., Silva R. A., Rangel C. M. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. Int. J. Hydrogen Energy, 2006, vol. 31, pp. 1341–1347. https://doi.org/10.1016/j.ijhydene.2005.11.015

20. Liu Ch.-H., Chen B.-H., Hsueh Ch.-L., Ku J.-R., Jeng M.-S., Tsau F. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2153–2163. https://doi.org/10.1016/j.ijhydene.2008.12.059

21. Akdim O., Demirci U. B., Miele P. Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy, 2009, vol. 34, pp. 7231–7238. https://doi.org/10.1016/j.ijhydene.2009.06.068

22. Demirci U. B., Miele P. Reaction mechanisms of the hydrolysis of sodium borohydride : A discussion focusing on cobalt-based catalysts. Comptes Rendus Chimie, 2014, vol. 17, iss. 7-8, pp. 707-716. https://doi.org/10.1016/j.crci.2014.01.012

23. Hosseini M. G., Mahmoodi R. The comparison of direct borohydride-hydrogen peroxide fuel cell performance with membrane electrode assembly prepared by catalyst coated membrane method and catalyst coated gas diffusion layer method using NiPt/C as anodic catalyst. Int. J. Hydrogen Energy, 2017, vol. 42, iss. 15. pp. 10363–10375. https://doi.org/10.1016/j.ijhydene.2017.02.022

24. Churikov A. V., Zapsis K. V., Sycheva V. O., Ivanischev A. V., Khramkov V. V., Churikov M. A. Separate determination of borohydride, borate, hydroxide and carbonate in the borohydride fuel cell by acid-base and iodometric potentiometric titration. Industrial Laboratory. Diagnostics of Materials, 2011, vol. 77, pp. 3–10 (in Russian).

Received: 
21.06.2021
Accepted: 
19.07.2021
Published: 
19.08.2021