ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Karaseva E. V., Kolosnitsyn D. V., Kuz'mina E. V., Kolosnitsyn V. S. The effect of surface capacity of positive electrodes on cycle life of lithium-sulfur batteries. Electrochemical Energetics, 2022, vol. 22, iss. 3, pp. 113-128. DOI: 10.18500/1608-4039-2022-22-3-113-128, EDN: BAROQI

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 72)
Language: 
Russian
Article type: 
Article
UDC: 
541.136/.136.88
EDN: 
BAROQI

The effect of surface capacity of positive electrodes on cycle life of lithium-sulfur batteries

Autors: 
Karaseva Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kolosnitsyn Dmitry Vladimirovich, Ufa Institute of Chemistry of the Russian Academy of Sciences
Kuz'mina Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kolosnitsyn Vladimir Sergeevich, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Abstract: 

The effect of sulfur content in positive electrodes (the surface capacity of sulfur electrodes) on the characteristics (such as the depth of sulfur electrochemical reduction, changes in capacitance and Coulomb efficiency during cycle life) of lithium-sulfur cells with electrolytes based on sulfolane was studied. It was shown that the reason for the capacitance decrease of the lithium-sulfur cells at the early stage of its cycle life is the displacement of sulfur of the porous positive electrode from the rear regions into the front ones. It was established that in order to achieve the maximum possible specific energy of the lithium-sulfur batteries with the electrolytes based on sulfolane, the surface capacitance of the positive electrodes should be in the range of 2-3 mA⋅h/cm2.

Acknowledgments: 
The work was performed on the equipment of the Center for Collective Use “Chemistry”.
Reference: 
  1. Beyond Li-Ion High Energy & Power Cells Market: [Presenatation]. Shmuel De-Leon Energy, Ltd. 2018. Available at: https://www.sdle.co.il/wp-content/uploads/2018/12/27-Beyond-Li-Ion-battery High-Energy-and-Power-Cells-Market2018-for-conferences.pdf (accessed 26 September 2022).
  2. Risse S., Angioletti-Uberti S., Dzubiella J., Ballauff M. Capacity fading in lithium/sulfur batteries: A linear four-state model. J. Power Sources, 2014, no. 267, pp. 648–654. https://doi.org/10.1016/j.jpowsour.2014.05.076
  3. Mikhaylik Y. V., Akridge J. R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. A1969–A1976. https://doi.org/10.1149/1.1806394
  4. Newman J. S., Tobias C. W. Theoretical Analysis of Current Distribution in Porous Electrodes. J. Electrochem. Soc., 1962, vol. 109, pp. 1183–1191.
  5. Newman J., Thomas-Alyea E. K. Electrochemical System. 3rd ed. Canada, John Wiley & Sons, 2014. 641 p.
  6. Ksenzhek O. S. Porous electrodes. Theory, research methods, some questions of application: Thesis for the degree of Doctor of Chemical Sciences. Dnepropetrovsk, 1965. 298 p.
  7. Jow T. R., Xu K., Borodin O., Ue M., eds. Electrolytes for Lithium and Lithium-Ion Batteries. Springer, 2014, vol. 58, 476 p. (Modern Aspects of Electrochemistry). https://doi.org/10.1007/978-1-4939-0302-3
  8. Mochalov S. E., Antipin A. V., Nurgaliev A. R., Kolosnitsyn V. S. Multichannel potentiostat-galvanostat for battery and electrochemical cells cycling. Electrochemical Energetics, 2015, vol. 15, no. 1, pp. 45–50 (in Russian).
  9. Mochalov S. E., Antipin A. V., Kolosnitsyn V. S. Multichannel test system for secondary chemical current sources and electrochemical cells. Nauchnoe priborostroenie [Scientific Instrumentation], 2009, vol. 19, no. 3, pp. 88–92 (in Russian).
  10. Mochalov S. E., Antipin A. V., Nurgaliev A. R., Kolosnitsyn D. V., Kolosnitsyn V. S. A hardware and software complex for studying the charge and discharge characteristics of secondary chemical current sources. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], 2021, no. 4, pp. 133–140 (in Russian). https://doi.org/10.31857/S0032816221040078
  11. Program for computer “ElChemLab, DATA Analyzer ver. 2.0”, certificate 2021668129 RF. D. V. Kolosnitsyn. Owner Ufa Federal Research Centre of the Russian Academy of Sciences (RU). Published 10 November 2021. 1 p.
  12. Kolosnitsyn D. V., Kuzmina E. V., Karaseva E. V. Automation of Data Processing of Electrochemical Studies of Battery Cells. Electrochemical Energetics, 2019, vol. 19, no. 4, pp. 186–197 (in Russian). https://doi.org/10.18500/1608-4039-2019-19-4-186-197
  13. Zheng D., Wang G., Liu D., Si J., Ding T., Qu D., Yang X., Qu D. The Progress of Li-S Batteries – Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Advanced Material Technologies, 2018, vol. 3, no 9, article no. 1700233. https://doi.org/10.1002/admt.201700233
  14. Khamitov E. M., Kuzmina E. V., Kolosnitsyn D. V., Kolosnitsyn V. S. Theoretical study of the electrochemical reduction of sulfur in lithium–sulfur cells: The formation of lithium octasulfide. Russian Journal of Physical Chemistry A, 2019, vol. 93, no. 6, pp. 1111–1115.
  15. Schön P., Krewer U. Revealing the complex sulfur reduction mechanism using cyclic voltammetry simulation. Electrochimica Acta, 2021, vol. 373, no. 12, article number 137523. https://doi.org/10.1016/j.electacta.2020.137523
  16. Zou Q., Lu Y.-C. Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV-vis Spectroscopic Study. J. Phys. Chem. Lett., 2016, vol. 7, pp. 1518–1525. https://doi.org/10.1021/acs.jpclett.6b00228
  17. Kolosnitsyn V. S., Sheina L. V., Mochalov S. E. Physicochemical and electrochemical properties of solutions of lithium salts in sulfolan. Elektrokhimiya [Russian Journal of Electrochemistry], 2008, vol. 44, no. 5, pp. 575-578. https://doi.org/10.1134/S102319350805011X
Received: 
13.10.2022
Accepted: 
24.10.2022
Published: 
30.11.2022