ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Mukhin V. V., Rezvov S. A., Grigor'eva O. Y., Kulova T. L., Skundin A. M. Synthesis and electrochemical properties of LiCo1 – x – yMgxTiyO2 (0 ? x ? 0.036; 0 ? y ? 0.026). Electrochemical Energetics, 2007, vol. 7, iss. 4, pp. 205-?. , EDN: HNWDZB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Article type: 
Article
EDN: 
HNWDZB

Synthesis and electrochemical properties of LiCo1 – x – yMgxTiyO2 (0 ? x ? 0.036; 0 ? y ? 0.026)

Autors: 
Mukhin V. V., JSC Novosibirsk Plant of Chemical Concentrates
Rezvov S. A., JSC Novosibirsk Plant of Chemical Concentrates
Grigor'eva Oksana Yur'evna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

At present LiCoO2 is commercially available material for positive electrodes of lithium-ion batteries. For further improvement of its properties a number of doped samples of lithium cobaltite were synthesized. Mg and Ti were used as dopants. Crystal structure of LiCo1 – x – yMgxTiyO2 was studied with XRD, whereas chemical composition was determined with atomic absorption spectroscopy, complexometric titration as well as inductively-bonded plasma. The average initial discharge capacity amounted to 145 to 150 mA·h/g. Degradation of non-doped samples was 1.5 mA·h/g per cycle. Doping results in decrease of degradation rate, doping effect manifests itself at net dopant content more than 0.02. The degradation rate happens to be least at x+y = 0.05. In this case degradation rate is less than 0.6 mA·h/g per cycle, which is 2.5 times less than that for non-doped lithium cobaltite.

Key words: 
Reference: 

1. Lithium Batteries: Science and Technology/Eds. G.-A. Nazri, G. Pistoia. Boston: Kluwer Academic, 2004.
2. Julien C., Nazir G. A., Rougier A. // Solid State Ionics. 2000. V. 135. P. 121.
3. Kim T.-S., Ko T.-K., Na B.-K., Cho W. I., Chao B. W. // J. Power Sources. 2004. V. 138. P. 232.
4. Tukamoto H., West A. R. // J. Electrochem. Soc. 1997. V. 144. P. 3164.
5. Kim H.-J., Jeong Y.-U., Lee J.-H., Kim J.-J. // J. Power Sources. 2006. V. 159. P. 233.
6. Elumalai P., Vasan H. N., Munichandraiah N. // J. Power Sources. 2004. V. 125. P. 77.
7. Frangini S., Scaccia S., Carewska M. // Electrochim. Acta. 2003. V. 48. P. 3473.
8. Mladenov M., Stoyanova R., Zhecheva E., Vassilev S. // Electrochem. Communications. 2001. V. 3. P. 410.
9. Fey G. T.K., Chen J. G., Subramanian V. // J. Power Sources. 2003. V. 119–121. P. 658.
10. Yoon W.-S., Lee K.-K., Kim K.-B. // J. Power Sources. 2001. V. 97–98. P. 303.
11. Levasseur S., Menetrier M., Delmas C. // Chem. Mater. 2002. V. 14. P. 3584.
12. Gao Y., Yakovleva M. V., Ebner W. B. // Electrochem. Solid State Lett. 1998. V. 1. P. 117.

Received: 
30.11.2007
Accepted: 
30.11.2007
Published: 
25.12.2007