ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Goffman V. G., Makarova A. D., Maksimova L. A., Gorokhovskii A. V., Tret'yachenko E. V., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Solid proton-conducting ceramic electrolyte for energy storage units. Electrochemical Energetics, 2021, vol. 21, iss. 4, pp. 197-205. DOI: 10.18500/1608-4039-2021-21-4-197-205, EDN: IVDRCE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 79)
Article type: 

Solid proton-conducting ceramic electrolyte for energy storage units

Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.
Makarova Anna Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Maksimova Liliia Alekseevna, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Tret'yachenko Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.

The paper considers the electrochemical properties of potassium polytitanate synthesized at the values of pH varying from 3 to 8 in a wide temperature range from ? 26 to + 80°C. The conductivity values and the activation energy were determined with the help of the method of impedance spectroscopy. The application of the obtained material used as a ceramic solid electrolyte in the energy storage units operating at low temperatures in the Far North is considered in the article.


1. Gao H., Lian K. Characterizations of proton conducting polymer electrolytes for electrochemical capacitors. Electrochimica Acta, 2010, vol. 56, no. 1, pp. 122–127.

2. Muthuvinayagam M., Sundaramahalingam K. Characterization of proton conducting poly ethylene oxide : Polyvinyl pyrrolidone based polymer blend electrolytes for electrochemical devices. High Performance Polymers, 2021, vol. 33, no. 2, pp. 205–216.

3. Kayumov R. R., Shmygleva L. V., Evshchik E. Y., Sanginov E. A., Popov N. A., Bushkova O. V., Dobrovolsky Y. A. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan-Ethylene Carbonate-Diglyme System. Russian Journal of Electrochemistry, 2021, vol. 57, no. 8, pp. 911–920.

4. Yaroslavtseva T. V., Reznitskikh O. G., Sherstobitova E. A., Erkabaev A. M., Brezhestovsky M. S., Bushkova O. V. Solid polymer electrolytes in a poly(butadiene-acrylonitrile)-LiBr system. Ionics, 2017, vol. 23, no. 12, pp. 3347–3363.

5. Zvonarev E. EEMB Batteries and Accumulators. Year 2010. Elektronnye komponenty [Electronic Components], 2010, no. 8, pp. 63–68 (in Russian).

6. Singh B., Im H. N., Park J. Y., Song S. J. Electrical Behavior of CeP2O7 Electrolyte for the Application in Low-Temperature Proton-Conducting Ceramic Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2012, vol. 159, no. 12, pp. F819–F825.

7. Gorokhovskii A. V., Goffman V. G., Gorshkov N. V., Tret’yachenko E. V., Telegina O. S., Sevryugin A. V. Electrophysical Properties of Ceramic Articles Based on Potassium Polytitanate Nanopowder Modified by Iron Compounds. Glass and Ceramics, 2015, vol. 72, no. 1–2, pp. 54–56.

8. Goffman V., Gorokhovsky A., Kompan M., Tretyachenko E., Telegina O., Kovnev A., Fedorov F. Electrical properties of the potassium polytitanate compacts. Journal of Alloys and Compounds, 2014, vol. 615, pp. 526–529.

9. Aguilar-Gonzalez M. A., Gorokhovsky A. V., Aguilar-Elguezabal A. Removal of lead and nickel from aqueous solutions by SiO2 doped potassium titanate. Materials Science and Engineering : B, 2010, vol. 174, no. 1–3, pp. 105–113.

10. Telegina O. S., Goffman V. G., Gorohovskij A. V., Kompan M. E., Slepcov V. V., Gorshkov N. V., Kovyneva N. N., Kovnev A. V. The nature conductivity in the amorphous potassium polytitanate. Electrochemical Energetics, 2015, vol. 15, no. 1, pp. 23–28 (in Russian).

11. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065.

12. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ? x% (K0.5Bi0.5)TiO3 + lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177.

13. Cruz-Manzo S., Greenwood P., Chen R. An Impedance Model for EIS Analysis of Nickel Metal Hydride Batteries. Journal of the Electrochemical Society, 2017, vol. 164, no. 7, pp. A1446–A1453.

14. Goffman V. G., Gorohovskij A. V., Gorshkov N. V., Telegina O. S., Kovnev A. V., Orozaliev E. E., Slepcov V. V. Impedance spectroscopy of polymer composites based on base potassium polytitanate. Electrochemical Energetics, 2014, vol. 14, no. 3, pp. 141–148 (in Russian).