Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Sodium-based compounds as hosts for reversible intercalation of lithium ions

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

УДК 541.136+546.33+544.463+541.138

DOI:  https://doi.org/10.18500/1608-4039-2016-16-3-92-99

In this work, we studied the cycling behavior of Na2FeP2O7, Na2FePO4F and Na3V2(PO4)2F3 with triclinic, orthorhombic and tetragonal structure in hybrid Na/Li electrochemical cells with Li anode and LiPF6-based electrolyte. The occurrence of electrochemical Nа+/Li+ ion exchange was established resulting in the formation of the new mixed Na-Li compositions with different degree of exchange: ∼NaLiFeP2O7, NaLiFePO4F and ∼ Na2.5Li0.5V2(PO4)2F3. All materials showed high capacity and stability upon cycling.

Literature
  1. Yabuuchi N., Kubota K., Dahbi M., Komaba S. Research development on sodium -ion batteries. Chemical Reviews, 2014, vol. 114, no. 23, pp. 11636–11683. DOI:10.1021/cr500192f.
  2. Yao H.-R., You Y., Yin Y.-X., Wan L.-J., Guo Y.-G. Rechargeable dual -metal -ion batteries for advanced energy storage. Physical Chemistry Chemical Physics, 2016, vol. 18, no. 14, pp. 9326–9333. DOI:10.1039/C6CP00586A.
  3. Barpanda P., Liu G.D., Ling C.D., Tamaru M., Avdeev M., Chung S. C., Yamada Y., Yamada A. Na2FeP2O7 : a safe cathode for rechargeable sodium -ion batteries. Chemistry of Materials, 2013, vol. 25, no. 17, pp. 3480–3487. DOI:10.1021/cm401657c.
  4. Barpanda P., Liu G.D., Mohamed Z., Ling C. D., Yamada A. Structural, magnetic and electrochemical investigation of novel binary Na2−x(Fe1−yMny)P2O7 (0<=y<=1) pyrophosphate compounds for rechargeable sodium -ion batteries. Solid State Ionics, 2014, vol. 268, pp. 305–311. DOI:10.1016/j.ssi.2014.03.011.
  5. Kawabe Y., Yabuuchi N., Kajiyama M., Fukuhara N., Inamasu T., Okuyama R., Nakai I., Komaba S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochemistry Communications, 2011, vol. 13, no. 11, pp. 1225– 1228. DOI:10.1016/j.elecom.2011.08.038.
  6. Ellis B. L., Makahnouk W. R. M., Makimura Y., Toghill K., Nazar L. F. A multifunctional 3.5 V iron -based phosphate cathode for rechargeable batteries. Nature Materials, 2007, vol. 6, pp. 749–753. DOI:10.1038/nmat2007.
  7. Barker J., Saidi M. Y., Swoyer J. L. A sodium -ion cell based on the fluorophosphate compound NaVPO4F. Electrochemical and Solid State Letters, 2003, vol. 6, no. 1, pp. A1–A4. DOI:10.1149/1.1523691.
  8. Serras P., Palomares V., Goni A., de Muro I.G., Kubiak P., Lezama L., Rojo T. High voltage cathode materials for Na -ion batteries of general formula Na3V2O2x(PO4)2F3−2x. Journal of Materials Chemistry, 2012, vol. 22, no. 41, pp. 22301–22308. DOI:10.1039/ C2JM35293A.
  9. Bianchini M., Brisset N., Fauth F., Weill F., Elkaim E., Suard E., Masquelier C., Croguennec L. Na3V2(PO4)2F3 revisited : a high -resolution diffraction study. Chemistry of Materials, 2014, vol. 26, no. 14, pp. 4238–4247. DOI:10.1021/cm501644g.
  10. Larson A. C., Von Dreele R. B. General structure analysis system. Los Alamos, Los Alamos National Laboratory Report, LAUR 86–748, 2004. 224 p.
  11. Cheary R. W., Coelho A. A., Cline J. P. Fundamental parameters line profile fitting in laboratory diffractometers. Journal of Research of the National Institute of Standards and Technology, 2004, vol. 109, no. 1, pp. 1–25. DOI:10.6028/jres.002.
  12. Gover R. K. B., Bryan A., Burns P., Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006, vol. 177, no. 17–18, pp. 1495–1500. DOI:10.1016/j.ssi.2006.07.028.
  13. Kosova N. V., Tsapina A. M., Slobodyuk A. B., Petrov S. A. Structure and electrochemical properties of mixed transition -metal pyrophosphates Li2Fe1−yMnyP2O7 (0<=y<=1). Electrochimica Acta, 2015, vol. 174, pp. 1278–1289. DOI:10.1016/j.electacta.2015.06.070.
  14. Kosova N. V., Podugolnikov V. R., Devyatkina E. T., Slobodyuk A. B. Structure and electrochemistry of NaFePO4 and Na2Fe- PO4F cathode materials prepared via mechanochemical route. Materials Research Bulletin, 2014, vol. 60, pp. 849–857. DOI: 10.1016/ j.materresbull.2014.09.081.
  15. Barker J., Gover R. K. B., Burns P., Bryan A. J. Li4/3Ti5/3O4|| Na3V2(PO4)2F3 : an example of a hybrid -ion cell using a non -graphitic anode. J. Electrochem. Soc., 2007, vol. 154, no. 9, pp. A882–A887. DOI: 10.1149/1.2756975.
  16. Kosova N. V., Rezepova D. O., Petrov S. A., Slobodyuk A. B. Electrochemical and chemical Na+/Li+ ion exchange in Na -based cathode materials : Na1.56Fe1.22P2O7 and Na3V2(PO4)2F3. J. Electrochem. Soc., 2017, vol. 164, no. 1, pp. A6192–A6200. DOI:10.1149/2.0301701jes.
  17. Ong S. P., Chevrier V. L., Hautier G., Jain A., Moore C., Kim S., Ma X., Ceder G. Voltage, stability and diffusion barrier differences between sodium -ion and lithium -ion intercalation materials. Energy & Environmental Science, 2011, vol. 4, pp. 3680–3688. DOI:10.1039/C1EE01782A.
Full Text (PDF):
(downloads: 650)
Файл статьи: