Simulation and estimation of lithium-sulfur battery charge state using fuzzy neural network

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The possibility of determining the charge state of lithium-sulfur batteries using the ANFIS model was estimated. Easily measurable in practice physical quantities were used as input parameters of the model. They are the battery voltage, the rate of its change and the number of previous cycles. The analysis of ANFIS models with various parameters (the number and type of membership functions) was carried out. It was shown that ANFIS is a model that makes it possible to estimate the charge state of a lithium-sulfur battery with the accuracy of more than 95%. The proposed type of models can be used in control and monitoring systems, together with digital aggregated twins, for additional training of models based on real data and increasing the accuracy of estimating the charge state of lithium-sulfur batteries.


1. Li J., Niu Zh., Guo C., Li M., Bao W. Catalyzing the polysulfide conver-sion for promoting lithium sulfur battery performances : A review. Journal of Energy Chemistry, 2020, vol. 54, pp. 434–451.

2. Yang X., Li X., Adair K., Zhang H., Sun X. Structural Design of LSB From Fundamental Research to Practical Application. Electrochemical Energy Reviews, 2018, vol. 1, pp. 239–293.

3. Bruce P., Freunberger S. A., Hardwick L., Tarascom J. M. Li-O2 and Li-S batteries with high-energy storage. Nature Mater., 2012, vol. 11, pp. 19–29.

4. Wang C., Zhu K., Chi Z., Ke F., Yang Y., Wang A. Weikun Wang, Lix-iao Miao. How far away are lithium-sulfur batteries from commercialization? Frontiers in Energy Research, 2019, vol. 7, article 123.

5. Long B., Li X., Gao X., Liu Z. Prognostics Comparison of Lithium-Ion Battery Based on the Shallow and Deep Neural Networks Model. Energies, 2019, vol. 12, iss. 17, article 3271.

6. Kumar B., Khare N., Chaturvedi P. K. FPGA-based design of advanced BMS implementing SoC.SoH estimators. Microelectronics Reliability, 2018, vol. 84, pp. 66–74.

7. Hua X., Zhang C., Offer G. Finding a better fit for lithium ion batteries : A simple, novel, load dependent, modified equivalent circuit model and parameter-ization method. Journal of Power Sources, 2021, vol. 464, article 229117.

8. Piller S., Perrin M., Jossen A. Methods for state-of-charge determination and their applications. Journal of Power Sources, 2001, vol. 96, pp. 113–120.

9. Chang W. Y. The state of charge estimating methods for battery : A review. ISRN Applied Mathematics, 2013, vol. 2013, article ID953792.

10. Cuma M. U., Koroglu T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renewable and Sustainable Energy Reviews, 2015, vol. 42, pp. 517–531.

11. Wild M., Offer G. J. Lithium–Sulfur batteries. Hoboken, NJ, USA, John Wiley & Sons, Inc., 2019. 335 p.

12. Kuz’mina E. V., Karaseva E. V., Chudova N. V., Mel’nikova A. A., Kolosnitsyn V. S. On the possibility of determination of thermodynamic functions of the Li–S electrochemical system using the EMF method. Russian Journal of Electrochemistry, 2019, vol. 55. no. 10, pp. 1215–1225 (in Russian).

13. Haykin S. Neural Networks : A Comprehensive Foundation Subse-quent Edition. Prentice Hall, 1999. 842 p.

14. Kvasnicka V., Sklenák S., Pospichal J. Application of Recurrent Neural Networks in Chemistry. Prediction and Classification of 13C NMR Chemical Shifts in a Series of Monosubstituted Benzenes. Journal of Chemical Information and Modeling, 1992, vol. 32, pp. 142–147.

15. Zadeh L. Concept of a Linguistic Variable and its Application to Approximate Reasoning. American Elsevier Publishing Company, Inc., 1975. 166 p.

16. Chau K. T., Wu K. C., Chan C. C., Shen W. X. A new battery capacity indi-cator for nickel–metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system. Energy Conversion and Management, 2003, vol. 44, pp. 2059–2071.

17. Chau K. T., Wu K. C., Chan C. C. A new battery capacity indicator for lith-ium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system. Energy Conversion and Management, 2004, vol. 45, pp. 1681–1692.

18. Fleischer C., Waag W., Bai Z., Sauer D. U. Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries. Journal of Power Electronic, 2013, vol. 13, no. 4, pp. 516–517.

19. Fotouhi A., Auger D. J., Longo S. Lithium-Sulfur Battery State-of-Charge Observability Analysis and Estimation. IEEE Transactions on Power Electronics, 2018, vol. 33, no. 7, pp. 5847–5859.

20. Khizhnyakov Y. N. Algoritmy nechjotkogo, nejronnogo i nechjotko-nejronnogo upravlenija v sistemah real’nogo vremeni [Algorithms of Fuzzy, Neural and Fuzzy-neural Control in Real-time Systems]. Perm, Izdatel’stvo Permskogo Natsional’nogo Issledovatel’skogo Politehnicheskogo Universiteta, 2013. 160 p. (in Russian).

21. Kouxa P. Analysis of neural-network-fuzzy models. Digital Library Scribd. Site. Available at (accessed 10 February 2021).

22. Sancarlos A., Cameron M., Abel A., Cueto E., Duval J.-L., Chinesta F. From ROM of Electrochemistry to AI-Based Battery Digital and Hybrid Twin. Archives of Computational Methods in Engineering, 2019, vol. 28, pp. 979–1015.

23. Ramachandran R., Subathra B., Srinivasan S. Recursive Estimation of Battery Pack Parameters in Electric Vehicles. 9th IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). Madurai, India, 2018, pp. 165–171.

Full Text (PDF):
(downloads: 34)