ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gubanova T. V., Garkushin I. K., Mikhalkina O. V. Search for low-melting functional electrolytes in a four-component reciprocal system Na⁺, Rb⁺, Cs⁺ || F⁻, NO₃⁻. Electrochemical Energetics, 2023, vol. 23, iss. 4, pp. 167-187. DOI: 10.18500/1608-4039-2023-23-4-167-187, EDN: TRXIMW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 43)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.015.3+544.018.4
EDN: 
TRXIMW

Search for low-melting functional electrolytes in a four-component reciprocal system Na⁺, Rb⁺, Cs⁺ || F⁻, NO₃⁻

Autors: 
Gubanova Tat'yana Valer'evna, Samara State Technical University
Garkushin Ivan Kirillovich, Samara State Technical University
Mikhalkina Olga Valer'evna, Samara State Technical University
Abstract: 

The division of the four-component reciprocal system Na+, Rb+, Cs+ || F, NO3 into stable elements was carried out for the first time. The phase tree, confirmed by the experimental data from the differential thermal analysis, was constructed. The chemical interaction in a yet unexplored faceting element, i. e. in the three-component reciprocal system Na+, Cs+ || F, NO3, and in the four-component reciprocal system was studied. Phase equilibria in the three-component reciprocal system Na+, Cs+ || F, NO3 and in the stable tetrahedron NaF-NaNO3-RbNO3-CsNO3 of the four-component reciprocal system Na+, Rb+, Cs+ || F, NO3 were experimentally studied. The calculation-graphical method to predict the melting temperature in the stable elements of the four-component reciprocal system Na+, Rb+, Cs+ || F, NO3 by describing the lower and the upper boundaries of properties according to the data of the one-, two- and three-component systems was used. The obtained compositions of eutectic alloys can be used as low-melting electrolytes for chemical cells, heat-storing materials, heat-storage mediums, melt-solvents of inorganic substances and as a reference material.

Reference: 
  1. Iskandarov K. I. Fiziko-khimicheskii analiz vzaimodeistviia mnogokomponentnykh sistem iz galogenidov i nitratov nekotorykh metallov v rasplavakh [Physico-chemical analysis of the interaction of multicomponent systems of halides and nitrates of some metals in melts]. Thesis Diss. Cand. Sci. (Chem.). Tashkent, 1990. 26 p. (in Russian).
  2. Khimicheskie istochniki toka: spravochnik. Pod red. N. V. Korovina, A. M. Skundina [Korovin N. V., Skundin A. M., eds. Chemical current sources: handbook]. Moscow, Moscow Power Engineering Institute Publ., 2003. 740 p. (in Russian).
  3. Rasulov A. I. Fazovye ravnovesiia, plotnost’ i elektroprovodnost’ v sisteme LiCl-NaCl-KCl-SrCl2-Sr(NO3)2 [Phase equilibria, density and electrical conductivity in the LiCl-NaCl-KCl-SrCl2-Sr(NO3)2]. Thesis Diss. Cand. Sci. (Chem.). Makhachkala, 2008. 22 p. (in Russian).
  4. Garkushin I. K., Dvorianova E. M., Gubanova T. V., Sukharenko M. A. Funktsional’nye materialy: ucheb. posobie: v 2 chastyakh [Functional materials: Textbook]. Samara, Samara State Technical University Publ., 2015, pt. 1, 387 p. (in Russian).
  5. Delimarskii Yu. K., Barchuk L. P. Prikladnaia khimiia ionnykh rasplavov [Applied chemistry of ion melts]. Kiev, Naukova dumka, 1988. 116 p. (in Russian).
  6. Garkushin I. K., Gubanova T. V., Frolov E. I., Garkushin A. I., Batalov N. N. Electrolytes for chemical current sources: Formation and research of systems, compositions and properties. Electrochemical Energetics, 2015, vol. 15, no. 4, pp. 180–195 (in Russian). https://doi.org/10.18500/1608-4039-2015-15-4-180-195
  7. Yaxuan Xionga, Zhenyu Wanga, Peng Xu, Chen Hongbing, Yuting Wu. Experimental investigation into the thermos-physical properties by dispersing nanoparticles to the nitrates. Energy Procedia, 2019, vol. 158, pp. 5551–5556. https://doi.org/10.1016/j.egypro.2019.01.588
  8. Qing-Guo Zhaoa, Chun-Xu Hu, Su-Jie Liu, Hang Guob. The thermal conductivity of molten NaNO3, KNO3 and their mixtures. Energy Procedia, 2017, vol. 143, pp. 774–779. https://doi.org/10.1016/j.egypro.2017.12.761
  9. Peng Xu, Xiaoyu Guo, Yaxuan Xiong, Yuting Wu, Chongfang Ma. The effect of added magnesium nitrate on the thermophysical property of sodium nitrate. Energy Procedia, 2019, vol. 158, pp. 547–552. https://doi.org/10.1016/j.egypro.2019.01.150
  10. Gimeneza P., Fereresa S. Effect of heating rates and composition on the thermal decomposition of nitrate based molten salts. Energy Procedia, 2015, vol. 69, pp. 654–662. https://doi.org/10.1016/j.egypro.2015.03.075
  11. Ortega-Fernández I., Grosu Y., Ociob A., Ariasb P. L., Rodríguez-Aseguinolazaa J., Faik A. New insights into the corrosion mechanism between molten nitrate salts and ceramic materials for packed bed thermocline systems: A case study for steel slag and Solar salt. Solar Energy, 2018, vol. 173, pp. 152–159. https://doi.org/10.1016/j.solener.2018.07.040
  12. Federsel K., Wortmann J., Ladenberger M. High-temperature and Corrosion Behavior of Nitrate Nitrite Molten Salt Mixtures Regarding their Application in Concentrating Solar Power Plants. Energy Procedia, 2015, vol. 69, pp. 618–625. https://doi.org/10.1016/j.egypro.2015.03.071
  13. Garkushin I. K., Mal’tseva A. V., Gubanova T. V., Moshchenskii Yu. V. Rasplavliaemyi elektrolit dlia khimicheskogo istochnika toka [Melted electrolyte for chemical current source]. Pat. 2489777 RF, MPK6 N01M 6/20, application of January 18, 2012 (in Russian).
  14. Garkushin I. K., Mal’tseva A. V., Gubanova T. V., Koliado A. V. Elektrolit dlia khimicheskogo istochnika toka [Electrolyte for chemical current source]. Pat. 2489776 RF, MPK6 N01M 6/20, application of December 09, 2011 (in Russian).
  15. Huiqin Yin, Shuang Wu, Xueliang Wang, Long Yan, Wenguan Liu. Thermodynamic description for the NaF-KF-RbF-ZnF2 system. Journal of Fluorine Chemistry, 2019, vol. 217, pp. 90–96. https://doi.org/10.1016/j.jfluchem.2018.09.008
  16. Holcomb D. E., Cetiner S. M. An Overview of Liquid-Fluoride-Salt Heat Transport Systems // OAK RIDGE NATIONAL LABORATORY. September 2010. Publ. Oak Ridge, Tennessee, UT-BATTELLE, LLC. 87 p.
  17. Termicheskie konstanty veshchestv: spravochnik. Pod red. V. P. Glushko [Glushko V. P., ed. Thermal constants of substances: handbook]. Moscow, VINITI Publ., 1981, iss. 10, part 1. 254 p. (in Russian).
  18. Termicheskie konstanty veshchestv: spravochnik. Pod red. V. P. Glushko [Glushko V. P., ed. Thermal constants of substances: handbook]. Moscow, VINITI Publ., 1981, iss. 10, part 2. 444 p. (in Russian).
  19. Diagrammy plavkosti solevykh sistem: spravochnik: v 2 chastyakh. Pod red. V. I. Posypaiko, E. A. Alekseevoi, N. A. Vasinoi. Ch. 2 [Posypaiko V. I., Alekseeva E. A., Vasina N. A., eds. Melting diagrams of salt systems: handbook]. Moscow, Metallurgy, 1977, part 2. 304 p. (in Russian).
  20. Diagrammy plavkosti solevykh sistem: spravochnik: v 2 chastyakh. Pod red. V. I. Posypaiko, E. A. Alekseevoi, N. A. Vasinoi. Ch. 1 [Posypaiko V. I., Alekseeva E. A., Vasina N. A., eds. Melting diagrams of salt systems: handbook]. Moscow, Metallurgy, 1977, part 1. 416 p. (in Russian).
  21. Garkushin I. K., Gubanova T. V., Maltseva A. V. Fiziko-khimicheskoe vzaimodeistvie v sistemakh iz galogenidov i nitratov s-elementov [Physico-chemical interaction in systems of halides and nitrates of s-elements]. Samara, Samara State Technical University Publ., 2016. 108 p. (in Russian).
  22. Diagrammy plavkosti solevykh sistem: spravochnik: v 6 chastyakh. Pod red. V. I. Posypayko, E. A. Alekseevoi. Ch. 5 [Posypayko V. I., Alekseeva E. A., eds. Melting diagrams of salt systems: handbook]. Moscow, Khimia, 1977, part 5. 392 p. (in Russian).
  23. Diogenov G. G., Kirillova V. F. Sistema Na, Rb || F, NO3 [System Na, Rb || F, NO3]. Dep. v VINITI, no. 757 hp-85 dep. Moscow, 1985. 155 p. (in Russian).
  24. Diogenov G. G., Kirillova V. F. Sistemy K, Rb || F, NO3 i Rb, Cs || F, NO3 [Systems K, Rb || F, NO3 and Rb, Cs || F, NO3]. Zhurnal neorganicheskoi khimii [Journal of Inorganic Chemistry], 1961, vol. 28, no. 9, pp. 2384–2388 (in Russian).
  25. Garkushin I. K., Frolov E. I., Gubanova T. V. Search for optimal salt compositions of electrolytes for chemical current sources and heat storage materials by two parameters Electrochemical Energetics, 2011, vol. 11, no. 2, pp. 93–102 (in Russian).
  26. Sorokina E. I., Garkushin I. K., Gubanova T. V. Search for salt compositions of electrolytes for chemical current sources and heat storage materials based on a five-component mutual system Li, K || F, Cl, VO3, MoO4. Electrochemical Energetics, 2012, vol. 12, no. 3, pp. 129–138 (in Russian).
  27. Garkushin I. K., Gubanova T. V., Frolov E. I., Dvoryanova E. M., Istomova M. A., Garkushin A. I. Functional materials based on multicomponent salt systems. Zhurnal neorganicheskoi khimii [Journal of Inorganic Chemistry], 2015, vol. 60, no. 3, pp. 374–391 (in Russian). https://doi.org/10.7868/S0044457X14120095
  28. Uendlandt U. Termicheskie metody analiza. Pod red. V. A. Stepanova, V. A. Bershteina [Stepanov V. A., Bershtein V. A., eds. Thermal methods of analysis]. Moscow, Mir, 1978. 526 p. (in Russian).
  29. Wagner M. Thermal Analysis in Practice: Fundamental Aspects. Hanser Publications, 2018. 349 p.
  30. Mikhalkina O. V., Gubanov T. V. Search for low-melting compounds in a triple mutual system of fluorides and nitrates of sodium and caesium. XXI Vserossiskay konferentsiy molodykh uchenykh khimikov (s mezhdunarodnym uchastiem): tez. dokl. [XXI All-Russian Conference of Young Scientists and Chemists (with international participation): abstracts of reports]. Nizhny Novgorod, 2018. 418 p. (in Russian).
  31. Bergman A. G., Bukhalova G. A. Thermodynamic relationships in triple mutual systems with complexation. Izvestiy sektora fiziko-khimicheskogo analiza [News of the Sector of Physical and Chemical Analysis], 1952, vol. 21, pp. 228–249 (in Russian).
  32. Kraeva A. G., Davydova L. S., Pervikova V. N., Posypayko V. I., Alekseeva V. A. Method of partitioning (triangulation) diagrams of the composition of multicomponent mutual systems with complex connections using graph theory and computers. Doklady AN SSSR. Seriya Chimiia [Reports of the Academy of Sciences of the USSR. Chemistry series], 1972, vol. 202, no. 4, pp. 850–853 (in Russian).
  33. Ore O. Teoriya grafov [Theory of Graph]. Moscow, Nauka, 1980. 336 p. (in Russian).
  34. Trunin A. S. Kompleksnaya metodologiya issledovaniya mnogokomponentnykh sistem [Complex methodology of multicomponent systems research]. Samara, Samara State Technical University Publ., SamVen Publ., 1997. 308 p. (in Russian).
  35. Garkushin I. K., Moshenskiy Yu. V., Frolov E. I., Egunov V. P. Termicheskii analiz i kalorimetriya [Thermal analysis and calorimetry]. Samara, Samara State Technical University Publ., 2013. 457 p. (in Russian).
Received: 
14.08.2023
Accepted: 
04.12.2023
Published: 
25.12.2023