For citation:
Prokhorov I. Y. Role of Ionic Donor Structural State in Polyvinyl Based Proton Conducting Membranes. Electrochemical Energetics, 2017, vol. 17, iss. 2, pp. 89-98. DOI: 10.18500/1608-4039-2017-17-2-89-98, EDN: ZVRPAB
Role of Ionic Donor Structural State in Polyvinyl Based Proton Conducting Membranes
DOI: https://doi.org/10.18500/1608-4039-2017-17-2-89-98
Polyvinyl alcohol based, protonated montmorillonite nanoparticles or aggregates doped membranes were produced by slip casting from diluted aqueous solutions and alcohol/borate crosslinking. In both cases, permeability was as low as below 2 ? 10?7 cm2/s while protonic conductivity was about by order higher in membranes with aggregated particles than in ones containing isolated nanoparticles and approaches 5 mS/cm. Highest selectivity of membranes with aggregated protonic donor was about 105 S?s/cm3, one order higher than selectivity of conventional PVA-based electrolytes and nearly two orders higher than the selectivity of commercially available perfluorinated materials. Such performance allows to consider new structured electrolytes as the base materials for advanced DMFC, transducers, soft actuators, and/or other electrochemical devices.
1. Deuk Ju Kim, Min Jae Jo, Sang Yong Nam. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. & Eng. Chem., 2015, vol. 21, pp. 36–52.
2. Paidar M., Fateev V., Bouzek K. Membrane electrolysis – History, current status and perspective. Electrochimica Acta, 2016, vol. 209, pp. 737–756.
3. Tremel A., Wasserscheid P., Baldauf M., Hammer T. Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. Intern. J. Hydrogen Energy, 2015, vol. 40, iss. 35, pp. 11457–11464.
4. Krawczyk J. M., Mazur A. M., Sasin T., Stoklosa A. W. Fuel cells as alternative power for unmanned aircraft systems – Current situation and development trends. Trans. Inst. Aviation, 2014, vol. 4, no. 237, pp. 49–62.
5. Nowell G. P. On the road with methanol: The present and future benefits of methanol fuel. Amer. Methanol Inst.: Mountain View. California, Acurex Environ. Corp., 1994. 56 p.
6. Sahu A. K., Pitchumani S., Sridhar P., Shukla A. K. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview. Bull. Mater. Sci., 2009, vol. 32, no. 3, pp. 285–294.
7. Osetrova N. V., Skundin A. M. Termostoykiye membrany dlya toplivnykh elementov [Thermostable membranes for fuel cells]. Elektrokhimicheskaya energetika [Electrochemical Energetics], 2007, vol. 7, no. 1, pp. 3–16 (in Russian).
8. Liu J.G., Zhao T.S., Chen R., Wong C. W. The effect of methanol concentration on the performance of a passive DMFC // Electrochemistry Communications. 2005, vol. 7, iss. 3, pp. 288–294.
9. Pourzare K., Mansourpanah Y., Farhadi S. Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Research Journal, 2016, vol. 3, iss. 4, pp. 496–513.
10. Grigor’ev S. A., Dzhus’ K. A., Bessarabov D. G., Markelov V. V., Fateev V. N. Issledovaniye mekhanizmov degradatsii membranno-elektrodnykh blokov tvordopolimernykh elektrolizorov vody [Research of degradation mechanism of the membrane-electrode assemblies of solid polymer water electrolyzer]. Elektrokhimicheskaya energetika [Electrochemical Energetics], 2014, vol. 14, no. 4, pp. 187–196 (in Russian).
11. Maiti J., Kakati N., Lee S. H., Jee S. H., Viswanathan B., Yoon Y. S. Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications? J. Power Sources, 2012, vol. 216, pp. 48–66.
12. Pivovar B S., Wang Y., Cussler E. L. Pervaporation membranes in direct methanol fuel cells. J. Membrane Science, 1999, vol. 154, iss. 2, pp. 155–162.
13. Cross-linked membranes of polyvinyl alcohol. Pat. US, no. 3232916, B01D71/38; C08F8/00; C08K3/38; C08K5/1515; D01F6/14; D01F6/16 / Fogle M. W. 1966.
14. Zeng L., Zhao T.S., Li Y. S. Synthesis and characterization of crosslinked poly(vinyl alcohol) / layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells. Intern. J. Hydrogen Energy, 2012, vol. 37, No, pp. 18425–18432.
15. Strawhecker K.E., Manias E. Structure and properties of poly(vinyl alcohol) / Na+ montmorillonite nanocomposites. Chem. Mater., 2000, vol. 12, no. 10, pp. 2943–2949.
16. Prohorov I. Ju., Radionova O. I., Akimov G. Ja. Osobennosti kristallizacii nanokompozitnyh membran na osnove PVS. [Peculiarities of crystallization of nanocomposite based membranes based on PVA]. Nanostrukturnoe Materialovedenie [Material Science of Nanostructures]. 2013, vol. 9, no. 1, pp. 88–103 (in Russian).
17. Yang C.-C., Lee Y.-J., Yang J. M. Direct methanol fuel cell (DMFC) based on PVA / MMT composite polymer membranes. J. Power Sources, 2009, vol. 188, iss. 1, pp. 30–37.
18. Sanglimsuwan A., Seeponkai N., Wootthikanokkhan J. Effects of concentration of organically modified nanoclay on properties of sulfonated poly(vinyl alcohol) nanocomposite membranes. Intern. J. Electrochemistry, 2011, vol. 2011, article ID 785282. 6 p.
19. Palani P. B., Kannan R., Rajashabala S., Rajendran S., Velraj G. Studies on PVA based nanocomposite proton exchange membrane for direct methanol fuel cell (DMFC) applications. IOP Conf. Series: Mater. Sci. & Eng., 2015, vol. 73, conf. 1, article ID 012128. 6 p.
20. Radionova O. I., Prokhorov I. Yu., Akimov G. Ya. Polyvinyl alcohol based nanocomposite membranes containing aluminum hydroxide gel. ECS Trans, 2013, vol. 50, iss. 2, pp. 1097–1106.
21. Omed A. G., Aziz B. K., Saeed A. O. Kaolin light concentration effects on the dielectric properties of polyvinyl alcohol films. Intern. J. Science & Advanced Technology, 2012, vol. 2, no. 1, pp. 65–70.
22. Thomassin J.-M., Pagnoulle C., Caldarella G., Germain A., Jerome R. Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application. J. Membrane Science, 2006, vol. 270, iss. 1–2, pp. 50–56.