ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Guseva E. S., Popova S. S., Frantsev R. K. Prospective Composite Materials for Lithium~Ion Battery Cathodes Based on~Transition Metals Oxide and Rare Earth Elements Oxides Modified with Fullerene and Fluoride Ions. Electrochemical Energetics, 2018, vol. 18, iss. 4, pp. 161-?. DOI: 10.18500/1608-4039-2018-18-4-161-191, EDN: MSRUBP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 265)
Language: 
Russian
Article type: 
Article
EDN: 
MSRUBP

Prospective Composite Materials for Lithium~Ion Battery Cathodes Based on~Transition Metals Oxide and Rare Earth Elements Oxides Modified with Fullerene and Fluoride Ions

Autors: 
Guseva Ekaterina Stanislavovna, The Saratov State Technical University of Gagarin Yu. A.
Popova Svetlana Stepanovna, Engelssky Institute of Technology of the Saratov State Technical University
Frantsev Roman Konstantinovich, Engelssky Institute of Technology of the Saratov State Technical University
Abstract: 

The review of cathode materials for lithium-ion batteries is presented, the analysis of advantages and application prospects of cathode materials on the basis of lithiated transition metals oxides is carried out. A method of heterovalent modification by ions of highly negative elements, lanthanum and its analogues for improving the electrochemical indices and stability of lithium manganese spinel is proposed. The effectiveness of fullerene, lithium fluoride, fullerenes halogen derivatives as modifying additive for MnO2 cathode materials has been noticed.

Reference: 

1. Gnezdov S. V., Sinebrjuhov S. L., Zvetnikov A. K., Opra D. P., Sergienko V. I. Promising cathode materials based on new fluorocarbon compounds. Vestnik DVN RAN, 2010, no. 5, pp. 5–11 (in Russian).

2. Aurbach D., Markovsky B., Salitra G., Markevich E., Talyossef Y., Koltypin M., Nazar L. Ellis B., Kovacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources, 2007, vol. 165, pp. 491–499.

3. Yuan X., Liu H., Zhang J. Lithium-ion Batteries: Advanced Materials and Technologies. New York, CRC Press, 2011. 414 p.

4. Armstrong A. R., Paterson A. J., Robertson A. D., Bruce P. G. Nonstoichiometric Layered LixMnyO2 with a High Capacity for Lithium Intercalation / Deintercalation. Chem. Mater., 2002, vol. 14, iss. 2, pp. 710–719.

5. Kedrinskij I. А., Yakovlev V. G. Li-ionnie akkumulatori [Li-ion batteries]. Krasnojarsk, Platina Publ., 2002. 268 p. (in Russian).

6. Kachibaj E. I., Imnadze R. А., Paikidze Т. V., Karseeva Е. I., korovin N. V., Kulova Т. L., Skundin А. M. Structure and electrochemical properties of cobalt doped lithium-manganese spinels for rechargeable lithium current sources. Electrochemical Energetics, 2002, vol. 2, no. 1, pp. 12–17 (in Russian).

7. Kulova Т. L., Karseeva E. I., Skundin А. М., Lapin N. V., Djankova N. Ja. Comparative study of synthesis and electrochemical properties of lithium cobalt oxide from different initial components. Message 2. Electrochemical properties of lithium cobalt synthesized from cobalt oxide and lithium hydroxide. Electrochemical Energetics, 2003, vol. 3, no. 4, pp. 169–173 (in Russian).

8. Kulova Т. L., Karseeva Е. I., Scundin А. М., Kachibaja E. I., Imnadze R. А., Paikidze Т. V. Structure and electrochemical behavior of lithium-manganese spinels doped with chromium and Nickel. Russ. J. Electrochem. 2004, vol. 40, no. 5, pp. 493–499.

9. Karseeva Е. I., Коmarova О. V., Korovin N. V., Кulova Т. L., Scundin А. М. Research of cyclability of positive electrode of lithium-ion battery in different electrolytes. Abstracts Eighth international scientific and technical conference of students and postgraduates MEI. Moscow, MEI, 2002, pp. 71–72 (in Russian).

10. Vovchuk V. Е., Mitjkin V. N., Galitskij А. А., Kuzovnikov А. М. Development of advanced methods of non-destructive diagnostics of industrial and experimental lithium current sources. Electrochemical Energetics, 2007, vol. 7, no. 2, pp. 103–114 (in Russian).

11. Korovin N. V., Skundin N. V., Scundin А. М. Himicheskie istochniki toka [Chemical current source]. Moscow, 2003. 740 p. (in Russian).

12. Kurenkova М. Ju. Vlijanie konstruczionno-technologicheskih parametrov na razrjadnie characteristiki litievih elementov [Influence of design and technological parameters on the discharge characteristics of lithium elements]. Diss. Cand. Sci. (Techn.). Saratov, 2005. 147 p. (in Russian).

13. Frantsev R. K., Popova S. S., Komarov A. V. Study of the mechanism of solid-phase electrochemical reduction of manganese (IV) in the intercalation of lanthanum and lithium in the MnO2-electrode structure. Electrochemical and electrolytic-plasma methods of modification of metal surfaces: materials III international scientific and technical conf. Costroma, Izd-vo KGU im. N. A. Nekrasova, 2010, pp. 37–42 (in Russian).

14. Wieser M. E., Holden N., Bohlke J. K. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure and Applied Chemistry, 2013, vol. 85, no. 5, pp. 1047–1078.

15. Kapteijn F., Singoredjo L., Andreini A., Moulijn J. A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 1994, vol. 3, pp. 173–189.

16. Iljin А. А., Kurochkin V. Ju., Iljin А. P., Smirnov N. N. Mechanochemical synthesis and catalytic properties of lead, copper and manganese ferrites. Himija I himicheskaja tehnologija [Chemistry and chemical technology], 2007, vol. 50, no. 5, pp. 76–81.

17. Zirulnilkov P. G., Salnikov V. S., Drozdov V. A., Stuken S. А., Bubnov А. V., Grigorov Е. I., Kalinkin А. V., Zaikovskiy V. I. The study of thermoactivation aljumokalievyh catalysts for complete oxidation. Kinetika i kataliz [Kinetics and catalysis], 1991, vol. 32, no. 2, pp. 439–446 (in Russian).

18. Kellerman D. G., Gorshkov V. S. Structure, properties, and application of lithium-manganese spinels. Russ. J. Electrochem., 2001, vol. 37, no. 12, pp. 1227–1236.

19. Ohzuku T., Ariyoshi K., Takeda S., Sakai Y. Synthesis and characterization of 5 V insertion material of Li[FeyMn2 ? y]O4 for lithium-ion batteries. Electrochim. Acta, 2001, vol. 46, pp. 2327–2336.

20. Tae-Joon K., Dongyeon S., Jaephil C., Byungwoo P. Enhancement of the electrochemical properties of o-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. J. Power Sources, 2006, vol. 154, pp. 268–272.

21. Amaral F. A., Bocchi N., Brocenschi R. F., Biaggio S. R. Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2? or F?) for use as cathode material in lithium batteries. J. Power Sources, 2010, vol. 195, pp. 3293–3299.

22. Koroljkov D. V. Electronnoe stroenie i svoystva soedinenij neperehodnyh elementov [Electronic structure and properties of connections of non-transitive elements]. Saint Petersburg, Khimija Publ., 1992. 312 p. (in Russian).

23. Fotiev A. A., Slobodin B. V., Khodos M. Ya. Vanadaty. Composition, synthesis, structure, properties. Moscow, , 1988. 272 p. (in Russian).

24. Curl R. F. Pre-1990 evidence for the fullerene proposal. Carbon, 1992, vol. 30, iss. 8, pp. 1149–1155.

25. Volnin М. Е. Fullerene – a new allotropic form of carbon. Vetnik RAN, 1993. no. 1, pp. 25–30 (in Russian).

26. Satpathy S. Electronic structure of the truncated-icosahedral C60 cluster. Chem. Phys. Lett., 1986, vol. 130, iss. 6, pp. 545–550.

27. Ichanhodgaeva М. М., Smirnov А. I. Fizicheskaja himija. Osnovi himicheskoj termodinamiki. Termochimija [Physical chemistry. Fundamentals of chemical thermodynamics. Thermochemistry]. Saint Petersburg, 2016. 29 p. (in Russian).

28. Larsson S., Volosov A. Optical spectrum of the icosahedral C60-“follene-60”. Chem. Phys. Lett., 1987, vol. 137, iss. 6, pp. 501–504.

29. Gerasimov V. I. Fullerene isomers. Fizika i mehanika materialov [Physics and mechanics of materials], 2000, vol. 20, no. 1, pp. 25–31 (in Russian).

30. Pogarskij А. F. Supramolecular chemistry. Part 2. Self-organizing molecules. Sorocovskij obrazovatelnij gurnal [Soros educational magazine], 1997, vol. 9, pp. 40–47 (in Russian).

31. Wu Z. C., Daniel A. J., Thomas F. G. Vibrational motions of buckminsterfullerene. Chem. Phys. Lett., 1987, vol. 137, iss. 3, pp. 291–294.

32. Weeks D. E., Harter W. G. Rotation–vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene. J. Chem. Phys., 1989, vol. 90, pp. 4744–4771.

33. Kratschmer W., Fostiropoulos K., Huffman D. R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem. Phys. Lett., 1990, vol. 170, iss. 2–3, pp. 167–170.

34. Klatschmer W., Huffman D. R. Fullerites: new form of crystalline carbon. Carbon, 1992, vol. 30, no. 8, pp. 1143–1147.

35. Osipjan Ju. А. Kveder V. V. Fullerenes-new substances for modern technology. Materialovedenie [Materials science], 1997, no. 1, pp. 2–6 (in Russian).

36. Popova S. S., Fransev R. K., Guseva Е. S., Ghuskeev A. R. Features of cathodic modification of MnO2-electrode in fullerene-containing aprotic organic solutions. Vestnik Saratovskogo gosudarstvennogo technicheskogo universitta [Bulletin of Saratov State Technical University], 2013, no. 1 (69), pp. 71–73 (in Russian).

37. Sorokin N. I. Activation volumes and activation enthalpies for various mechanisms of ion transfer in non-stoichiometric fluorides with the structure of fluorite and tisonite. Russ. J. Electrochem., 2000, vol. 36, no. 4, pp. 441–442.

38. Vovchchuk V. Е., Mitjkin V. N., Galitzkij А. А., Kuzovnikov А. М. Development of advanced methods of non-destructive diagnostics of industrial and experimental lithium current sources. Electrochemical Energetics, 2007, vol. 7, no. 2, pp. 103–114 (in Russian).

39. Jurovskaja M. A. Methods of obtaining derivatives of fullerenes. Sorocovskij obrazovatelnij gurnal [Soros educational magazine], 2000, vol. 6, no. 5, pp. 26–30 (in Russian).

40. Sidorov L. N., Makeev Ju. A. Chemistry of fullerenes. Sorocovskij obrazovatelnij gurnal [Soros educational magazine], 2000, vol. 1, no. 5, pp. 21–25 (in Russian).

41. Whitacre J., Yazami R., Hamwi A., Smart M. C., Bennett W., Prakash G. K., Miller T., Bugga R. Low operational temperature Li-CFx batteries using cathodescontaining sub-fluorinated graphitic materials. J. Power Sources, 2006, vol. 160, pp. 577–584.

42. Zhang Q., D’Astorg S., Xiao P. Zhang X, Lu L. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries. J. Power Sources, 2010, vol. 195, pp. 2914–2917.

43. Valand T., Nilsson G. The influence of F-ions on the electrochemical reactions on oxide covered Al. Corrosion Science, 1977, vol. 17, pp. 449–459.

44. Atovmjan L. O., Ukche E. A. Solid electrolyte. Problems of crystal chemistry of superionic conductors. In: Fizicheskaja chimija. Sovremennije problemy [Physical chemistry. Modern problems]. Moscow, Khimija Publ., 1983, pp. 92–116 (in Russian).

45. Potanin A. A. Solid-state chemical current source based on ion conductor of lanthanum trifluoride type. Rossijskij himicheskij zhurnal [Russian Chemical Journal], 2001, vol. XLV, no. 5–6, pp. 58–63 (in Russian).

46. Opra D. P., Gnedenkov S. V., Sinebrjuhov S. L. Czvetnikov A. K., Ustinov A. Ju., Sergienko V. I. Primary lithium current source based on organic fluorocarbon polymer material. Vestnik DVN RAN, 2013, no. 5, pp. 23–32 (in Russian).

47. Isikava N. Novoe v technologii soedinenij ftora [New in technology of fluorine compounds]. Moscow, Mir Publ., 1984. 592 p. (in Russian).

Received: 
25.11.2018
Accepted: 
25.12.2018
Published: 
25.12.2018