For citation:
Shubik B. M., Lukovtsev V. P., Bobov N. N., Beniaminova S. M. Применение акустических методов для~диагностики химических~источников тока. Electrochemical Energetics, 2018, vol. 18, iss. 1, pp. 13-19. DOI: 10.18500/1608-4039-2018-18-1-13-19, EDN: YWUOVK
Применение акустических методов для~диагностики химических~источников тока
DOI: https://doi.org/10.18500/1608-4039-2018-18-1-13-19
This article discusses the issue of increasing the reliability of evaluation of the depth of discharge of primary chemical sources of electric current by means of acoustic methods, which have never been used for this purpose, and integration of data of acoustic spectroscopy and impedance and noise spectroscopy.
1. Lukovtsev V. P., Rotenberg Z. A., Dribinskii A. V., Maksimov E. M., Ur’ev V. N. Otsenka stepeni razriazhennosti tionilkhloridno-litievykh istochnikov toka po ikh impedansnym kharakteristikam [Estimation of the degree of discharge of thionyl chloride-lithium current sources according to their impedance characteristics]. Elektrokhimiia [Electrochemistry], 2005, vol. 41, no. 10, pp. 1234–1238 (in Russian).
2. Bobov K. N., Kubantsev I. S., Lukovtsev V. P., Petrenko E. M. Diagnostika sostoianiia khimicheskikh istochnikov toka metodom shumovoj spektroskopii [Diagnostics of the state of chemical current sources by the method of noise spectroscopy]. Aktual’nye problemy gumanitarnykh i estestvennykh nauk [Actual problems of the humanities and natural sciences], 2016, vol. 12, pp. 16–18 (in Russian).
3. Grafov B. M., Klyuyev A. L., Davydov A. D., Lukovtsev V. P. Chebyshev’s noise spectroscopy for testing electrochemical systems. Bulgarian Chemical Communications, 2017, vol. 49, pp. 102–105.
4. Shubik B. M. Principy postroeniia samonastraivajushchikhsia procedur obrabotki sejsmicheskikh dannykh [Concepts of self-adaptive procedures formation for seismic data processing]. Geologiia i mineral’no-syr’evye resursy Sibiri [Geology and mineral resources of Siberia], 2011, no. 3, pp. 39–47 (in Russian).
5. Shubik B. M. Emissionno-tomograficheskie podkhody v sejsmicheskikh issledovaniiakh [Emission tomography principles in seismic researches]. Ekspozitsiia Neft’ Gaz [Exposition Oil & Gas], 1016, no. 3 (49), pp. 22–24 (in Russian).
6. Aksenov V. N., Afanas’ev L. V., Cherepeckaia E. B. Vizualizaciia vnutrennej struktury uglerodnykh kompozitov metodom lazernoj ul’trazvukovoj spektroskopii [Visualization of the internal structure of carbon composites by the laser ultrasound spectroscopy]. Gornyj informacionno-analiticheskii bjulleten’ (nauchno-tekhnicheskii zhurnal) [Mining Information and Analytical Bulletin {scientific and technical journal}]. Moscow, Izd-vo Gornaia kniga, 2015, no. 3, pp. 177–180 (in Russian).
7. Metod fazirovannoj reshetki (Phased array method of non-destructive testing). Nauchno-tekhnicheskii tsentr Ekspert, Nerazrushajushchii kontrol’ (Scientific and Technical Center Expert, Non-destructive testing). Available at: http://www.ntcexpert.ru/component/content/article?id=560:metod-fazirovannoj-reshetki (accessed: 21 February 2018) (in Russian).
8. Kats S. A., Shubik B. M. Sposob obrabotki sejsmicheskoj informatsii (energeticheskii analiz) [Seismic data processing method {power analysis}]. Avtorskoe svidetelstvo, no. 316053, SSSR, Bull. of patents of RF, 1971, no. 29 (in Russian).