ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Golubyatnikova L., Mishinkin V. Y., Garipov D. R., Kuz'mina E. V., Kolosnitsyn S. V. Physical and chemical properties of lithium perchlorate and tetrafluoroborate solutions in the mixture of sulpholane and sulfurous anhydride. Electrochemical Energetics, 2023, vol. 23, iss. 4, pp. 197-206. DOI: 10.18500/1608-4039-2023-23-4-197-206, EDN: YHKSME

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 147)
Language: 
Russian
Article type: 
Article
UDC: 
544.6.018.462
EDN: 
YHKSME

Physical and chemical properties of lithium perchlorate and tetrafluoroborate solutions in the mixture of sulpholane and sulfurous anhydride

Autors: 
Mishinkin Vadim Yurievich, Ufa Institute of Chemistry of the Russian Academy of Sciences
Kuz'mina Elena Vladimirovna, Institute of Organic Chemistry of the Ufa RAS Scientific Center
Kolosnitsyn Sergeevich Vladimir, Ufa Institute of Chemistry of the Russian Academy of Sciences
Abstract: 

The temperature dependencies of physical and chemical properties (viscosity, density, electrical conductivity) and the melting temperature of 1M solutions of lithium salts (LiClO4 and LiBF4) in the mixture of sulfolane and sulfurous anhydride (∼1M) were studied. It was shown that the introduction of 1M (5% wt.) of sulfurous anhydride into 1M solutions of LiClO4 and LiBF4 in sulfolane increased the specific and corrected electrical conductivity, densities, activation energy of electrical conductivity and viscous flow of electrolyte solutions; and reduced viscosity and melting temperatures.

Reference: 
  1. Zhang S. S., Xu K., Jow T. R. Study of LiBF4 as electrolyte salt for Li-ion battery. J. Electrochem. Soc., 2002, vol. 149, pp. A586–A590.
  2. Mishinkin V. Yu., Kamalova G. B., Kuz’mina E. V., Kolosnitsyn V. S. Modernization of the PE-TVZ flash point analyzer to determine the fire safety of electrolyte systems of energy-intensive batteries. Electrochemical Energetics, 2023, vol. 23, no. 2, pp. 80–86 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-2-80-86
  3. Sheina L. V., Kuz’mina E. V., Karaseva E. V., Gallyamov A. G., Prosochkina T. R., Kolosnitsyn V. S. Thermochemical and electrochemical stability of electrolyte systems based on sulfolane. Zurnal prikladnoy khimii [Journal of Applied Chemistry], 2018, vol. 91, no. 9, pp. 1257–1264 (in Russian).
  4. Sun X. G., Angell C. A. New sulfone electrolytes for rechargeable lithium batteries: Part I. Oligoether-containing sulfones. Electrochem. Commun., 2005, vol. 7, pp. 261–266. https://doi.org/10.1016/jelecom.2005.01.010
  5. Kolosnitsyn V. S., Sheina L. V., Mochalov S. E. Physicochemical and electrochemical properties of solutions of lithium salts in sulfolane. Elektrokhimiya [Electrochemistry], 2008, vol. 44, no. 5, pp. 620–623 (in Russian).
  6. Gao T., Wang B., Wang F., Li R., Wang L., Wang D. LiAlCl4⋅3SO2: A promising inorganic electrolyte for stable Li metal anode at room and low temperature. Ionics, 2019, vol. 25, pp. 4137–4147. https://doi.org/10.1007/s11581-019-02994-7
  7. Grundish N., Amos C., Goodenough J. B. Communication – Characterization of LiAlCl4 ⋅ xSO2. Inorganic Liquid Li+ Electrolyte. J. Electrochem. Soc., 2018, vol. 165, no. 9, pp. 1694–1696. https://doi.org/10.1149/2.0291809jes
  8. Cho J.-H., Ha J. H., Oh J., Lee S. B., Kim K.-B., Lee K.-Y. Facile Modification of LiAlCl4 Electrolytes for Mg-Li Hybrid Batteries by the Conditioning-Free Method. J. Phys. Chem. C, 2020, vol. 124, pp. 25738–25747. https://doi.org/10.1021/acs.jpcc.0c07914
  9. Park C. W., Oh S. M. Performances of Li/LixCoO2 cells in LiAlCl4⋅3SO2 electrolyte. J. Power Sources, 1997, vol. 8, pp. 338–343. https://doi.org/10.1016/S0378-7753(97)02518-4
  10. Pleshakov M. S., Belonenko S. A., Yalyushev N. I., Kundryutskov D. N., Pichugina N. A., Fedotov D. V. Sposob prigotovleniya rastvora electrolita dlya Li/SO2 accumuliatora [Method for preparing an electrolyte solution for a Li/SO2 battery]; Pat. 2248071 RF, MPK Н01M 6/14, Н01M 10/40, application of March 10, 2003 (in Russian).
  11. Kedrinskiy I. A., Dmitrenko V. Ye., Grudyanov I. I. Litiyevyye istochniki toka [Lithium current sources]. Moscow, Energoatomizdat, 1992. 240 p. (in Russian).
  12. Demakhin A. G., Ovsyannikov V. M., Ponomarenko S. M. Elektrolitnyye sistemy litiyevykh KHIT [Electrolyte systems of lithium CITs. Saratov, Saratov State University Publ., 1993. 220 p. (in Russian).
  13. Yair Ein‐Eli, Thomas S. R., Koch V., Aurbach D., Markovsky B. Schechter A. Ethylmethylcarbonate, a Promising Solvent for Li-Ion Rechargeable Batteries. J. Electrochem. Soc., 1996, vol. 143, no. 9, pp. 195–197.
  14. Chydinov E. A., Kedrinskiy I. A., Karlova O. V. Features of electroreduction of sulfur dioxide on the graphite electrode of a lithium-ion battery. Electrochemical Energetics, 2010, vol. 10, no. 1, pp. 48–53 (in Russian).
  15. Zlatilova P., Moshtev R. Conductivity of LiAlCl, solutions in nitromethane containing SO2. J. Power Sources, 1984, vol. 12, pp. 31–37.
  16. Kedrinskiy I. A., Yakovlev V. G. Li-ionnyye akkumulyatory [Li-ion batteries]. Krasnoyarsk, IPK “Platina”, 2002. 268 p. (in Russian).
  17. Abrosimov V. K., Korolev V. V., Afanas’yev V. N. Eksperimental’nyye metody khimii rastvorov: densimetriya, viskozimetriya, konduktometriya i drugiye metody [Experimental methods of solution chemistry: Densimetry, viscometry, conductometry and other methods]. Moscow, Khimiya, 1997. 351 p. (in Russian).
  18. Gammet L. Osnovy fizicheskoi organicheskoi khimii [Fundamentals of physical organic chemistry]. Moscow, Mir, 1972. 534 p. (in Russian).
  19. Big Chemical Encyclopedia. Available at: https://chempedia.info/info/sulfolane_constant/ (accessed October 2, 2023).
  20. Karapetyans Yu. A., Eychis A. N. Fiziko-khimicheskiye svoystva electrolitnykh rastvorov [Physicochemical properties of electrolyte non-aqueous solutions]. Moscow, Khimiya, 1989. 256 p. (in Russian).
Received: 
17.10.2023
Accepted: 
04.12.2023
Published: 
25.12.2023