For citation:
Shkol'nikov E. I., Vlaskin M. S., Ilyukhin A. S., Tarasenko A. B. Performance of free-breathing PEM FC in limited-volume conditions. Electrochemical Energetics, 2007, vol. 7, iss. 4, pp. 175-182. DOI: 10.18500/1608-4039-2007-7-4-175-182, EDN: IJPYOJ
Performance of free-breathing PEM FC in limited-volume conditions
This paper represents performance of air-hydrogen free-breathing Fuel Cell (FC) in limited volume conditions. Research work was carried out with thin two-cell stacks related to use in prototype of particular power source system, which includes aluminium-water microgenerator of hydrogen. In small current densities field (<200 mA/cm2) it was established, that after FC had been confined within the small volume, characteristics of FC became better than in non-limited-volume conditions due to self humidification. While experiments the relationship between characteristics of FC and speeds of cathode gap perflation by air was studied, and the existence of optimal speed of perflation was defined. Optimal speed of perflation provides for both required amount of air in the gap, and high air humidity in the pericathodic space. In medium current densities field (200–500 mA/cm2) optimal speed of perflation exists too. In high humidity conditions (RH=70%) in non-limited-volume the level of 250 mW/cm2 at single FC voltage of 0.5 V was achieved in long-term experiment.
1. Li P.-W., Zhang T., Wang Q.-M., Schaefer L., Chyu M. K. // J. Power Sources. 2003. Vol. 114(9). P. 63.
2. Chu D., Jiang R. // J. Power Sources. 1999. Vol. 83.P. 128.
3. Morner S. O., Klein S. A. // J. Solar Energy Engineering, 2001. Vol. 123. 225.
4. Nguyen T. V. // J. Electrochem. Soc., 1996. Vol. 143. P.
5. Kumar P. M., Kolar A. K. // Paper published in AER (National Conference on Advances in Energy Research) (2006). http: // www.ese.lib.ac.ib/aer206files/papers.htm, 13. L105.
6. Mennola T., Noponen M., Aronniemi M., Hottinen T., Nikkola M., Himanen O., Lund P. // J. Appl. Electrochem. 2003. Vol. 33. P. 979.
7. Mennola T., Noponen M., Kallio T., Nikkola M., Hottinen T. // J. Appl. Electrochem. 2004. Vol. 34. P. 31.
8. Buie C. R., Posner J. D., Fabian T., Cha S.-W., Kim D., Prinz F. B., Eaton J. K., Santiago J. G. // J. Power Sources 2006. Vol. 161. P. 191.
9. Noponen M., T, Mennola, Mikkola M., Hottinen T., Lund P. // J. Power Sources. 2002. Vol. 106. P. 304.
10. Fabian T., Posner J. D., R. O'Hayre, Cha S.-W., Eaton J. K., Prinz F. B., Santiago J. G. // J. Power Sources. 2006. Vol. 161. P. 168.
11. Tabe Y., Park S.-K., Kikuta K., Chikahisa T., Hishinuma Y. // J. Power Sources. 2006. Vol 162. P. 58.
12. Hottinen T., Himanen O., Lund P. // J. Power Sources. 2004. Vol. 138. P. 205.
13. Шейндлин А. Е., Жук А. З., Школьников Е. И., Туманов В. Л. Международный форум «Водородные технологии для производства энергии» (2006). http: // www.civilg8.ru/5034.php.
14. Шейндлин А. Е., Школьников Е. И. Международный форум «Водородные технологии для производства энергии» (2006). http: // www.civilg8.ru/5034.php.
15. Sheindlin A. E., Shkolnikov E. I., Zhuk A. Z. // Fuel Cell Science and Technology (2006), Abstracts of Scientific Advances in Fuel Cell Systems, Turin, Italy, P6.1.
16. Kordesh K., Simader G. Fuel cells and their application. Weinheim: VCH Verlagsgeselschaft, 1996.
17. National Energy Technology Laboratory. Fuel Cell Hand Book, 6th ed., Morgantown. West Verginia, 2002. P. 2.
18. Cooper K. R., Ramani V., Fenton J. M., Kunz H. R.. Experimental methods and data analyses for polymer electrolyte fuel cells. Scribner Associates, Inc. Jllinois, 2005.