ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Makhov S. V., Ushakov A. V., Ivanishchev A. V., Gridina N. A., Churikov A. V., Gamayunova I. M., Volynskii V. V., Klyuev V. V. Peculiarities of Lithium Pentatianate and Lithium – Vanadium(III) Phosphate Joint Operation in the Lithium-accumulating System. Electrochemical Energetics, 2017, vol. 17, iss. 2, pp. 99-119. DOI: 10.18500/1608-4039-2017-17-2-99-119, EDN: ZVRPAL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 77)
Article type: 

Peculiarities of Lithium Pentatianate and Lithium – Vanadium(III) Phosphate Joint Operation in the Lithium-accumulating System

Makhov Semen Viktorovich, Saratov State University
Ushakov Arseni Vladimirovich, Saratov State University
Ivanishchev Aleksandr Viktorovich, Saratov State University
Gridina Nelli Aleksandrovna, Saratov State University
Churikov Aleksei Vladimirovich, Saratov State University
Gamayunova Irina Mikhailovna, Saratov State University


A new electrochemical system with a negative electrode based on lithium pentatitanate Li4Ti5O12, a positive electrode based on the lithium-vanadium(III) phosphate Li3V2(PO4)3, 0.67M lithium chlorate(VII) LiClO4 solution in a mixture of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) as an electrolyte is proposed and the features of its functioning are considered. Electrode materials based on Li4Ti5O12 and Li3V2(PO4)3 when tested in the electrochemical cell with the 0.67M LiClO4 in PC + DME electrolyte and a lithium counter electrode show a high level of specific capacity, its stability during cycling, the ability to rapidly accumulate and release the charge. For a cell in which the electrochemical system (–) Li4Ti5O12| 0.67M LiClO4 in PC + DME | Li3V2(PO4)3 (+) with a balance of active substances in a capacity of 1: 1 is fully realized, there is a sharp deterioration of electrochemical behavior from cycle to cycle during testing. The paper cites the arguments and experimental data disclosing the influence of the products of the secondary oxidation of 1,2-dimethoxyethane at the Li3V2(PO4)3 electrode on the functional behavior of the Li4Ti5O12-electrode as the main reason for the observed decrease in the battery prototypes characteristics. It is shown that overcoming the detected problem is possible by optimizing the balance of active materials in the prototype.


1. Kedrinsky I. A., Yakovlev V. G. Li-ionnyye akkumulyatory [Li-ion batteries. Popular Science Edition]. Krasnoyarsk, Platina, 2002. 268 p. (in Russian).

2. Zhao B., Ran R., Liu M., Shao Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. R: Reports, 2015, vol. 98, pp. 1–71.

3. Rui X., Yan Q., Skyllas-Kazacos M., Lim T. M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources, 2014, vol. 258, pp. 19–38.

4. Liu C., Masse R., Nan X., Cao G. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater., 2016, vol. 4, pp. 15–58.

5. Ushakov A. V., Churikov A. V., Ivanishchev A. V., Gridina N. A., Volynskiy V. V., Klyuyev V. V. Kompozitnyye elektrodnyye materialy na osnove litiy-titanovoy shpineli: sintez, morfologiya i elektrokhimicheskiye svoystva [Composite electrode materials based on the lithium-titanium spinel: synthesis, morphology and electrochemical properties]. Materialy XIII Mezhdunar. konf. «Fundamental’nyye problemy preobrazovaniya energii v litiyevykh elektrokhimicheskikh sistemakh» [Materials of XIII International Conf. «Fundamental problems of energy conversion in lithium electrochemical systems»] (Almaty, Republic of Kazakhstan, September 16–19, 2014). Almaty, Al-Farabi Kazakh National University, 2014, pp. 120–122 (in Russian).

6. Ivanishchev A. V., Churikov A. V., Ushakov A. V. Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry. Electrochim. Acta, 2014, vol. 122, pp. 187–196.

7. Doughty D., Roth E. P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface, 2012, vol. 21, no. 2, pp. 37–44.

8. Hautier G., Jain A., Ong S. P., Kang B., Moore C., Doe R., Ceder G. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations. Chem. Mater., 2011, vol. 23, no. 15, pp. 3495–3508.

9. Wilkening M., Iwaniak W., Heine J., Epp V., Kleinert A., Behrens M., Nuspl G., Bensch W., Heitjans P. Microscopic Li self-diffusion parameters in the lithiated anode material Li4 + xTi5O12 (0 ? x ? 3) measured by 7Li solid state NMR. Phys. Chem. Chem. Phys., 2007, vol. 9, no. 47, pp. 6199–6202.

10. Takami N., Hoshina K., Inagaki H. Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction. J. Electrochem. Soc., 2011, vol. 158, no. 6, pp. A725–A730.

11. Kamata M., Esaka T., Kodama N., Fujine S., Yoneda K., Kanda K. Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium-Ion Conducting Materials. J. Electrochem. Soc., 1996, vol. 143, no. 6, pp. 1866–1870.

12. Takai S., Kamata M., Fujine S., Yoneda K., Kanda K., Esaka T. Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ionics, 1999, vol. 123, no. 1–4, pp. 165–172.

13. Fehr K. T., Holzapfel M., Laumann A., Schmidbauer E. DC and AC conductivity of Li4/3Ti5/3O4 spinel. Solid State Ionics, 2010, vol. 181, no. 23–24, pp. 1111–1118.

14. Leonidov I. A., Leonidova O. N., Perelyaeva L. A., Samigullina R. F., Kovyazina S. A., Patrakeev M. V. Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12. Physics of the Solid State, 2003, vol. 45, no. 11, pp. 2183–2188.

15. Vijayakumar M., Kerisit S., Rosso K. M., Burton S. D., Sears J. A., Yang Z., Graff G. L., Liu J., Hu J. Lithium diffusion in Li4Ti5O12 at high temperatures. J. Power Sources, 2011, vol. 196, no. 4, pp. 2211–2220.

16. Ohzuku T., Ueda A., Yamamota N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc., 1995, vol. 142, no. 5, pp. 1431–1435.

17. Wagemaker M., Simon D., Kelder E., Schoonman J., Ringpfeil C., Haake U., Lutzenkirchen-Hecht D., Frahm R., Mulder F.? A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4 + xTi5O12. Adv. Mater., 2006, vol. 18, pp. 3169–3173.

18. Zhong Z., Ouyang C., Shi S., Lei M. Ab initio Studies on Li4 + xTi5O12 Compounds as Anode Materials for Lithium-Ion Batteries. ChemPhysChem, 2008, vol. 9, no. 14, pp. 2104–2108.

19. Jiang S., Zhao B., Chen Y., Cai R., Shao Z. Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. J. Power Sources, 2013, vol. 238, pp. 356–365.

20. Han C., He Y. B., Liu M., Li B., Yang Q. H., Wong C. P., Kang F. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A, 2017, vol. 5, pp. 6368–6381.

21. Sato M., Ohkawa H., Yoshida K., Saito M., Uematsu K., Toda K. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics, 2000, vol. 135, pp. 137–142.

22. Huang H., Yin S. C., Kerr T., Taylor N., Nazar L. F. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3 / carbon cathode for rechargeable lithium batteries. Adv. Mater., 2002, vol. 14, pp. 1525–1528.

23. Saidi M. Y., Barker J., Huang H., Swoyer J. L., Adamson G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem. Solid-State Lett., 2002, vol. 5, pp. A149–A151.

24. Wang L., Li X., Tang Z., Zhang X. Research on Li3V2(PO4)3/Li4Ti5O12/C composite cathode material for lithium ion batteries. Electrochem. Commun., 2012, vol. 22, pp. 73–76.

25. Yi T. F., Shu J., Zhu Y. R., Zhou A. N., Zhu R. S. Structure and electrochemical performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 spinel as 5 V materials. Electrochem. Commun., 2009, vol. 11, pp. 91–94.

26. Mao W. F., Zhang N. N., Tang Z. Y., Feng Y. Q., Ma C. X. High rate capability of Li3V2(PO4)3/C composites prepared via a TPP-assisted carbothermal method and its application in Li3V2(PO4)3||Li4Ti5O12. J. Alloys Compd., 2014, vol. 588, pp. 25–29.

27. Liu C., Wang S., Zhang C., Fu H., Nan X., Yang Y., Cao G. High power high safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency. Energy Storage Mater., 2016, vol. 5, pp. 93–102.

28. Ushakov A. V., Churikov A. V., Ivanishchev A. V., Makhov S. V., Gamayunova I. M. Cyclic Voltammetry and Potentiostatic Intermittent Titration of Li4Ti5O12 Based Electrode. XXXVI Modern Electrochemical Methods (Jetrichovice, Czech Republic, May 23–27, 2016). Kveten, Czech Republic, 2016, pp. 268–271.

29. Bagotskiy V. S., Skundin A. M. Khimicheskiye istochniki toka [Chemical power sources]. Moscow, Energoizdat, 1981, 360 p. (in Russian).

30. Kelly R. J. Review of safety guidelines for peroxidizable organic chemicals. Chemical Health & Safety, 1996, vol. 3, no. 5, pp. 28–36.

31. Yang C. C., Hu H. C., Lin S. J., Chien W. C. Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell. J. Power Sources, 2014, vol. 258, pp. 424–433.

32. Chesnokov B. B. Glimy [Glimes]. Khimicheskaya entsiklopediya: v 5 t. T. 1: A – Darzana [Chemical Encyclopedia: in 5 volumes. Vol. 1: A – Darzana]. Moscow, Sovetskaya entsiklopediya, 1988, p. 582 (in Russian).

33. Antonovskiy V. L. Peroksidnyye soyedineniya organicheskiye [Organic peroxide compounds]. Khimicheskaya entsiklopediya: v 5 t. T. 3: Medn – Polimernyye [Chemical Encyclopedia: in 5 vol. Vol. 1: Copper-Polymer]. Moscow, Bol’shaya Rossiyskaya entsiklopediya, 1992, pp. 492–493 (in Russian).

34. Tarasevich B. N. IK-spektr osnovnykh klassov organicheskikh soyedineniy. Spravochnyye materialy [IR spectrum of the main classes of organic compounds. Reference materials] Available at: Khimicheskaya informatsionnaya set’. Nauka. Obrazovaniye. Tekhnologiya. [Chemical Information Network. The science. Education. Technology]. 2012. URL: (accessed: 25 January, 2017) (in Russian).

35. Denisov E. T. Peroxides as hydrogen atom acceptors: Comparison of the reactivity of peroxides and oxygen-centered radicals. Kinet. Catal., 1999, vol. 40, pp. 217–222.

36. Antonovskiy V. L., Khursan S. L. Fizicheskaya khimiya organicheskikh peroksidov [Physical chemistry of organic peroxides]. Moscow, IKTS “Akademkniga”, 2003, 391 p. (in Russian).

37. Ingold K. U. Peroxy Radicals. Acc. Chem. Res., 1969, vol. 2, pp. 1–9.

38. Carboni M., Marrani A. G., Spezia R., Brutti S. 1,2-Dimethoxyethane Degradation Thermodynamics in Li-O2 Redox Environments. Chem. Eur. J., 2016, vol. 22, pp. 17188–17203.

39. Luchinskiy G. P. Khimiya titana [Chemistry of titanium]. Moscow, Izdatel’stvo «Khimiya», 1971, 472 p. (in Russian).

40. Spano E., Tabacchi G., Gamba A., Fois E. On the role of Ti(IV) as a lewis acid in the chemistry of titanium zeolites: Formation, structure, reactivity, and aging of ti-peroxo oxidizing intermediates. A first principles study. J. Phys. Chem. B, 2006, vol. 110, pp. 21651–21661.

41. Yudanov I. V., Gisdakis P., Di Valentin C., Rosch N. Activity of peroxo and hydroperoxo complexes of Ti(IV) in olefin epoxidation: A density functional model study of energetics and mechanism. Eur. J. Inorg. Chem., 1999, no. 12, pp. 2135–2145.