ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gamayunova I. M., Ushakov A. V. Optimizing of Conditions for the Solid-State Synthesis of Lithium-Ion Battery Electrode Materials Using the Multifactorial Experiment Planning. Electrochemical Energetics, 2018, vol. 18, iss. 2, pp. 98-108. DOI: 10.18500/1608-4039-2018-18-2-98-108, EDN: XSLOWD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 74)
Language: 
Russian
Article type: 
Article
EDN: 
XSLOWD

Optimizing of Conditions for the Solid-State Synthesis of Lithium-Ion Battery Electrode Materials Using the Multifactorial Experiment Planning

Autors: 
Gamayunova Irina Mikhailovna, Saratov State University
Ushakov Arseni Vladimirovich, Saratov State University
Abstract: 

DOI: https://doi.org/10.18500/1608-4039-2018-18-2-98-108

In this paper we investigated the possibility of using of the planning of the multifactor experiment technique to optimize conditions of the solid phase synthesis of the cathode material LiFePO4/C. Parameters of optimization were the carbon content in the samples, the temperature and duration of synthesis; response function – the value of the initial discharge capacity of the electrode. A polynom bounded by linear members was obtained. Further experiments showed that the maximum capacity was demonstrated by electrodes which synthesized at parameter values changed relative to the original in the direction consistent with signs of the regression equation coefficients. The technique of the planning of the multifactorial experiment had made it possible to significantly facilitate the choice of electrode material synthesis conditions by giving the direction of the change significant parameters to achieve the optimum (maximum value of the response function – the specific capacitance).

Reference: 

1. Hu M., Pang X., Zhou Z. Recent progress in high-voltage lithium ion batteries. J. Power Sources, 2013, vol. 237, pp. 229–242.

2. Xu X., Lee S., Jeong S., Kim Y., Cho J. Recent progress on nanostructured 4 V cathode materials for Li-ion batteries for mobile electronics. Materials Today, 2013, vol. 16, pp. 487–495.

3. Zaghib K., Guerfi A., Hovington P., Vijh A., Trudeau M., Mauger A., Goodenough J. B., Julien C. M. Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. J. Power Sources, 2013, vol. 232, pp. 357–369.

4. Liu T., Cao F., Ren L., Li X., Sun S., Sun X., Zang Z., Niu Q., Wu J. A theoretical study of different carbon coatings effect on the depolarization effect and electrochemical performance of LiFePO4 cathode. J. Electroanal. Chem., 2017, vol. 807, pp. 52–58.

5. Liu W. L., Tu J. P., Qiao Y. Q., Zhou J. P., Shi S. J., Wang X. L., Gu C. D. Optimized performances of core-shell structured LiFePO4/C nanocomposite. J. Power Sources, 2011, vol. 196, pp. 7728–7735.

6. Wang Y., Zhang D., Yu X., Cai R., Shao Z., Liao X.-Z., Ma Z.-F. Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys Compd., 2010, vol. 492. pp. 675–680.

7. Dong Y. Z., Zhao Y. M., Chen Y. H., He Z. F., Kuang Q. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries. Materials Chemistry and Physics, 2009, vol. 115, pp. 245–250.

8. Gong C., Xue Z., Wen S., Ye Y., Xie X. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J. Power Sources, 2016, vol. 318, pp. 93–112.

9. Toprakci O., Toprakci H. A. K., Ji L., Zhang X. Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Bateries. Powder and Particle Journal, 2010, no. 28, pp. 50–73.

10. Zhang D.-Y., Yuan Q.-H., Zhang P.-X., Huang X.-Q., Xu Q.-M., Ren X.-Z., Liu J.-H. Study on the optimum processing conditions of citric acid coated LiFePO4/C composite materials. J. Functional Materials, 2009, vol. 40, pp. 763–766.

11. Liu T., Li X., Sun S., Sun X., Cao F., Ohsaka T., Wu J. Analysis of the relationship between vertical imparity distribution of conductive additive and electrochemical behaviors in lithium ion batteries. Electrochim. Acta, 2018, vol. 269, pp. 422–428.

12. Ahnazarova S. L., Kafarov V. V. Optimizaciya ehksperimenta v himii i himicheskoj tekhnologii [Optimizing of the experiment in chemistry and chemical technology]. Moscow, Vyssh. Shkola, 1985. 319 p. (in Russian).

13. Adler Yu. P., Markova E. V., Granovskij Yu. V. Planirovanie ehksperimenta pri poiske optimal’nyh uslovij [Planning of the experiment at searching for the optimal conditions]. Moscow, Nauka Publ., 1976. 280 p. (in Russian).

14. Gridina N. A., Romanova V. O., Churikov M. A., Churikov A. V., Ivanishcheva I. A., Zapsis K. V., Volynskiy V. V., Klyuyev V. V. Issledovaniye katodnogo materiala LiMnyFe1 ? yPO4 dlya litiy-ionnykh akkumulyatorov [Investigation of cathode material LiMnyFe1?yPO4 for lithium-ionbatteries]. Elektrokhimicheskaya Energetika [Electrochemical Energetics], 2013, vol. 13, no. 4, pp. 181–186. (in Russian).

15. Kosova N. V., Devyatkina E. T., Petrov S. A. Fast and Low Cost Synthesis of LiFePO4 Using Fe3+ Precursor. J. Electrochem. Soc., 2010, vol. 157, no. 11, pp. A1247–A1252.

16. Jugovic D., Uskokovic D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sources, 2009, vol. 190, no. 2, pp. 538–544.

Received: 
22.04.2018
Accepted: 
22.04.2018
Published: 
10.06.2018