ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Makarova A. D., Goffman V. G., Gorokhovskii A. V., Tret'yachenko E. V., Maksimova L. A., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Nonlinear effects in a cell with a solid electrolyte based on protonated potassium polytitanate. Electrochemical Energetics, 2022, vol. 22, iss. 1, pp. 35-42. DOI: 10.18500/1608-4039-2022-22-1-35-42, EDN: CFRCIO

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
546.56
EDN: 
CFRCIO

Nonlinear effects in a cell with a solid electrolyte based on protonated potassium polytitanate

Autors: 
Makarova Anna Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Tret'yachenko Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Maksimova Liliia Alekseevna, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

In this paper, the electrochemical and electrophysical properties of protonated potassium polytitanate synthesized at pH values varying from 3.11 to 8.88 depending on the magnitude of the polarization voltage and the magnitude of the measured signal were studied by the method of impedance spectroscopy. The values of effective conductivity, relaxation times, frequency dependences of the loss tangent, and dielectric permittivity are determined.

Reference: 

1. Goffman V. G., Makarova A. D., Maksimova L. A., Gorohovskij A. V., Tretyachenko E. V., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Solid proton-conducting ceramic electrolyte for energy storage. Electrochemical Energetics, 2021, vol. 21, no. 4, pp. 197–205 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-4-197-205

2. Aguilar-Gonzalez M. A., Gorokhovsky A. V., Aguilar-Elguezabal A. Removal of lead and nickel from aqueous solutions by SiO2 doped potassium titanate. Materials Science and Engineering : B, 2010, vol. 174, no. 1–3, pp. 105–113. https://www.doi.org/10.1016/j.mseb.2010.03.057

3. Telegina O. S., Goffman V. G., Gorohovskij A. V., Kompan M. E., Slepcov V. V., Gorshkov N. V., Kovyneva N. N., Kovnev A. V. Harakter provodimosti v amorfnom polititanate kaliya. Electrochemical Energetics, 2015, vol. 15, no. 1, pp. 23–28 (in Russian).

4. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065. https://www.doi.org/10.1111/j.1551–2916.2008.02574.x

5. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ? x% (K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177. https://www.doi.org/10.1080/00150193.2019.1658043

6. Cruz-Manzo S., Greenwood P., Chen R. An Impedance Model for EIS Analysis of Nickel Metal Hydride Batteries. Journal of the Electrochemical Society, 2017, vol. 164, no. 7, pp. A1446–A1453. https://www.doi.org/10.1149/2.0431707jes

7. Oven R. AC impedance of poled glass during de-poling. Solid State Ionics, 2018, vol. 315, pp. 14–18. https://www.doi.org/10.1016/j.ssi.2017.11.018

Received: 
21.02.2022
Accepted: 
21.03.2022
Published: 
31.03.2022