For citation:
Makarova A. D., Goffman V. G., Gorokhovskii A. V., Tret'yachenko E. V., Maksimova L. A., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Nonlinear effects in a cell with a solid electrolyte based on protonated potassium polytitanate. Electrochemical Energetics, 2022, vol. 22, iss. 1, pp. 35-42. DOI: 10.18500/1608-4039-2022-22-1-35-42, EDN: CFRCIO
Nonlinear effects in a cell with a solid electrolyte based on protonated potassium polytitanate
In this paper, the electrochemical and electrophysical properties of protonated potassium polytitanate synthesized at pH values varying from 3.11 to 8.88 depending on the magnitude of the polarization voltage and the magnitude of the measured signal were studied by the method of impedance spectroscopy. The values of effective conductivity, relaxation times, frequency dependences of the loss tangent, and dielectric permittivity are determined.
1. Goffman V. G., Makarova A. D., Maksimova L. A., Gorohovskij A. V., Tretyachenko E. V., Gorshkov N. V., Vikulova M. A., Bainyashev A. M. Solid proton-conducting ceramic electrolyte for energy storage. Electrochemical Energetics, 2021, vol. 21, no. 4, pp. 197–205 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-4-197-205
2. Aguilar-Gonzalez M. A., Gorokhovsky A. V., Aguilar-Elguezabal A. Removal of lead and nickel from aqueous solutions by SiO2 doped potassium titanate. Materials Science and Engineering : B, 2010, vol. 174, no. 1–3, pp. 105–113. https://www.doi.org/10.1016/j.mseb.2010.03.057
3. Telegina O. S., Goffman V. G., Gorohovskij A. V., Kompan M. E., Slepcov V. V., Gorshkov N. V., Kovyneva N. N., Kovnev A. V. Harakter provodimosti v amorfnom polititanate kaliya. Electrochemical Energetics, 2015, vol. 15, no. 1, pp. 23–28 (in Russian).
4. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065. https://www.doi.org/10.1111/j.1551–2916.2008.02574.x
5. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ? x% (K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177. https://www.doi.org/10.1080/00150193.2019.1658043
6. Cruz-Manzo S., Greenwood P., Chen R. An Impedance Model for EIS Analysis of Nickel Metal Hydride Batteries. Journal of the Electrochemical Society, 2017, vol. 164, no. 7, pp. A1446–A1453. https://www.doi.org/10.1149/2.0431707jes
7. Oven R. AC impedance of poled glass during de-poling. Solid State Ionics, 2018, vol. 315, pp. 14–18. https://www.doi.org/10.1016/j.ssi.2017.11.018