Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Modelling of ion trasport in naometric channels with charge claudin macromolecules: nonlocal electrostatic approach

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

DOI: 10.18500/1608-4039-2015-15-4-149-159

It was developed a mathematical model of ion transport in tight junction (TJ) between the membranes of epithelial cells on the basis of nonlocal-electrostatic theory of ion solvation. It is shown that the Na+/Cl- (charge) selectivity in TJ arise due to a combination of two effects: the dielectric exclusion of ions from them and electrostatic displacement Cl-. There are presented the dependences of the selectivity in TJ on the concentration of the fixed charged groups and changes in the correlation length of the water in TJ. The values of Na+/Cl- selectivity calculated by our model agree with the experimental data on the epithelial transport, available in the litera

Literature

1. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, vol. 295, pp. 483-485.
2. Kim H. J., Park H. S., Hyun M. S., Chang I. S., Kim M., Kim B. H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewenella putrefaciens. Enzyme Microb. Technol., 2002, vol. 30, pp. 145-152
3. Potter M. C. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc., 1910, vol. 3, pp. 245-249.
4. Tender L., Gray S., Groveman E., Lowy D., Kauffma P., Melhado R., Tyce R., Flynn D., Petrecca R., Dobarro J. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources, 2008, vol. 179, pp. 571-575.
5. Rabaey K., Boon N., Siciliano S. D., Verhaege M., Verstraete W. Biofuel cells select for microbial consortia that self-mediate elecron transfer. Appl. Environ. Microbiol., 2004, vol. 70, pp. 5373-5382.
6. Colegio O. R., Van Itallie C. M., McCrea H. J., Rahner C., Anderson J. M. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Amer. J. Physiol. Cell Physiol., 2002, vol. 283, pp. C142-C147.
DOI: 10.1152/ajpcell.00038.2002.
7. Van Itallie C. M., Anderson J. M. The molecular physiology of tight junction pores. Physiology, 2004, vol. 19, pp. 331-338.
DOI: 10.1152/physiol.00027.2004.
8. Anderson J. M., Van Itallie C. M. Physiology and function of the tight junction. Cold Spring Harb Perspect. Biol., 2009, vol. 1, pp. a002584-1-a002584-16.
DOI:  10.1101/cshperspect.a002584.
9. Shen L., Weber C. R., Raleigh D. R., Yu D., Turner J. R. Tight junction pore and leak pathways\,: a dynamic duo. Annu. Rev. Physiol., 2011, vol. 73, pp. 283-309.
DOI: 10.1146/annurev-physiol-012110-142150.
10. Gunzel D., Yu A. S. Claudins and the modulation of tight junction permeability. Physiol. Rev., 2013, vol. 93, pp. 525-569.
DOI: 10.1152/physrev.00019.2012.
11. Rubashkin A. A. A model of electro-osmosis in a leaky tight junction of epithelial cells. Dokl. Biochem. Biophys., 2006, vol. 407, pp. 71-73 (in Russian).
DOI: 10.1134/S1607672906020074.
12. Rubashkin A. A., Iserovich P., Hernandez J., Fischbarg J. Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions. J. Membr. Biol., 2005, vol. 208, pp. 251-263.
DOI: 10.1007/s00232-005-0831-y.
13. Fischbarg J., Dikce F. P., Iserovich P., Rubashkin A. A. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force. J. Membr. Biol., 2006., vol. 210, pp. 117-130.
DOI: 10.1007/s00232-005-0850\mbox{-8.
14. Kornyshev A. A., Volkov A. G. On the evaluation of standard Gibbs energies of ion transfer between two solvents. J. Electroanalyt. Chem., 1984, vol. 180, pp. 363-381.
DOI: 10.1016/0368-1874(84)83594-7.
15. Rubinstein A., Sabirianov R. F., Mei W. N., Namavar F., Khoynezhad A. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach. Phys. Rev. E, 2010, vol. 82, pp. 021915-1-021915-7.
DOI: http://dx.doi.org/10.1103/PhysRevE.82.021915.
16. Vorotyntsev M. A., Kornyshev A. A. Elektrostatika sred c prosranstvennoi dispersiei [Electrostatics of media with spetial dispersion]. Moscow, Nauka Publ., 1993, 240 p. (in Russian).
17. Pailluson F., Blossey R. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics. Phys. Rev. E, 2010, vol. 82, pp. 052501-1-052501-4.
DOI: http://dx.doi.org/10.1103/PhysRevE.82.052501.
18. Ebbinghaus S., Kim S. J., Heyden M., Yu X., Heugen U., Gruebele M., Leitner D. M., Havenith M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 20749-20752. DOI: 10.1073/pnas.0709207104.
19. Kornyshev A. A., Tsitsuashvili G. I., Yaroshchuk A. E. Polar structure effect in the theory of dielectric removal of ions from polymer membrane pores. Calculation of the free energy of charge transfer from solvent bulk into pore. Sov. Electrochem., 1989, vol. 25, pp. 923-931 (in Russian).
20. Gourary B. S., Adrian F. J. Wave Functions for Electron-Excess Color Centers in Alkali Halide Crystals. Solid State Phys., 1960, vol. 10, pp. 127-247.
DOI: 10.1016/S0081-1947(08)60702-X.
21. Spravochnik po elektrokhimii, pod red. А. M. Sukhotina. [Electrochemistry Hand-Book. Ed. A. M. Suchotin]. Leningrad, Chemistry Publ., 1981, pp. 424 (in Russian).

Full Text (PDF):
(downloads: 166)
Файл статьи: