Modeling of Characteristics of Lithium-Sulfur Batteries Based on Experimental Evaluation of Electrochemical Properties of Electrode Materials

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

To model the characteristics of lithium-sulfur batteries based on the experimental evaluation of the electrochemical properties of electrode materials, the software "Battery Designer", included in the software package “ElChemLab”, was developed. The possibilities of software are described. The specific energy of lithium-sulfur batteries is compared for different surface capacitances of a positive electrode and for different amounts of electrolyte. It is shown that to develop lithium-sulfur batteries with higher specific characteristics in comparison with lithium-ion batteries, the capacity of the positive electrode of lithium-sulfur batteries should be in the range of 4.5–15 m⋅A⋅h/cm2, the amount of loaded electrolyte – no more than 3 μl/mA⋅h.


1. Aneke M., Wang M. Energy storage technologies and real life applications – A state of the art review. Applied Energy, 2016, vol. 179, pp. 350–377.

2. Benvenistea G., Rallo H., Canals L., Merino A., Amante B. Comparison of the state of lithium-sulphur and lithium-ion batteries applied to electromobility. J. Environ. Manage, 2018, vol. 226, pp. 1–12. DOI:

3. Kim P. J., Fontecha H. D., Kim K. K., Pol V. G. Toward high-performance lithium–sulfur batteries : upcycling of LDPE plastic into sulfonated carbon scaffold via microwave-promoted sulfonation. ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 17, pp. 14827–14834. DOI:

4. Brucel P. G., Freunberger S. A., Hardwick L. J., Tarascon J.-M. Li–O2 and Li–S batteries with high energy storage. Nature materials, 2012, vol. 11, no. 1, pp. 19–29. DOI:

5. Handbook of chemistry and physics / ed. D. R. Lide. 85th ed. Boca Raton, London, New York, Wachington, CRS Press, 2005. 2712 p.

6. Cleaver T., Kovacik P., Marinescu M., Zhang T., Offerb G. Perspective-commercializing lithium sulfur batteries : are we doing the right research? Electrochem. Soc., 2018, vol. 165, iss. 1, pp. 6029–6033. DOI:

7. Hannauer J., Scheers J., Fullenwarth J., Fraisse B., Stievano L., Johansson P. The quest for polysulfides in lithium–sulfur battery electrolytes : an operando confocal raman spectroscopy study. ChemPhysChem, 2015, vol. 16, pp. 2755–2759. DOI:

8. Cuisinier M., Cabelguen P.-E., Evers S., He G., Kolbeck M., Garsuch A., Bolin T., Balasubramanian M., Nazar L. F. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy. Phys. Chem. Lett., 2013, vol. 4, pp. 3227–3232. DOI:

9. Yu X. Q., Pan H. L., Zhou Y. N., Northrup P., Xiao J., Bak S., Liu M. Z., Nam K.l., Qu D. Y., Liu J., Wu T. P., Yang X. Q. Direct observation of the redistribution of sulfur and polysufides in Li–S batteries during the first cycle by in situ X-Ray fluorescence microscopy. Adv. Energy Mater., 2015, vol. 5, iss. 16. 1500072. DOI:

10. Rezan Demir-Cakan. Li-S Batteries : The Challenges, Chemistry, Materials, and Future Perspectives. New Jersey, World Scientific Publishing Europe Ltd., 2017. 372 p.

11. Xi K., Kidambi P. R., Chen R., Gao C., Peng X., Ducati C., Hofmann S., Kumar R. V. Binder free three-dimensional Sulphur. Few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale, 2014, vol. 6. no. 11, pp. 5557–6188.

12. Mikhaylik Yu.V., Kovalev I., Schock R., Kumaresan K., Xu J., Affinito J. High energy rechargeable Li-S cells for EV application : Status, remaining problems and solutions. ECS Transactions, 2010, vol. 25, iss. 35, pp. 23–34. DOI:

13. Oxis Energy. Our Cell and Battery Technology Advantages. Available at: (accessed 1 February 2019).

14. Hunt I. A., Patel Y., Szczygielski M., Kabacik L., Offer G. J. Lithium sulfur battery nail penetration test under load. J. Energy Storage, 2015, vol. 2, pp. 25–29. DOI:

15. Chung S.-H., Chang C.-H., Manthiram A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater., 2018, vol. 28, iss. 28, 1801188(1–20). DOI:

16. 1D isothermal lithium-ion battery. Available at: (accessed 1 January 2019).

17. Program for computer “ElChemLab, Battery Designer”, certificate 2019611983 RF. D. V. Kolosnitsyn. Owner Ufa Federal Research Centre of the Russian Academy of Sciences (RU). Published 07 February 2019.

18. Li M., Zhang Y., Hassan F., Ahn W., Wang X., Liu W., Jianga G., Chen Z. Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. J. Mater. Chem. A, 2017, vol. 5, iss. 40, pp. 21435–21441. DOI:

19. Sun Q., Fang X., Weng W., Deng J., Chen P. N., Ren J., Guan G. Z., Wang M., Peng H. S. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed., 2015, vol. 54, pp. 10539–10544. DOI:

20. McCloskey B. D. Attainable gravimetric and volumetric energy density of Li–S and Li-Ion battery cells with solid separator-protected Li metal anodes. Phys. Chem. Lett., 2015, vol. 6, no. 22, pp. 4581–4588. DOI:

21. Song M.-K., Cairns E. J., Zhang Y. Lithium-sulfur batteries with high specific energy : old challenges and new opportunities. Nanoscale, 2013, vol. 5, pp. 2186–2204. DOI:

22. Assary R. S., Curtiss L. A., Moore J. S. Toward a molecular understanding of energetics in LiS batteries using nonaqueous electrolytes : a high-level quantum chemical study. Phys. Chem. C, 2014, vol. 118, no. 22, pp. 11545–11558. DOI:

23. Kuzmina E. V., Karaseva E. V., Kolosnitsyn D. V., Sheina L. V., Shakirova N. V., Kolosnitsyn V. S. Sulfur redistribution between positive and negative electrodes of lithiumsulfur cells during cycling. J. Power Sources, 2018, vol. 400, pp. 511–517. DOI:

Full Text (PDF):
(downloads: 315)