For citation:
Khokhlova M. О., Shubnikova E. V., Tropin E. S., Bragina O. A., Nemudry A. P. Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis. Electrochemical Energetics, 2024, vol. 24, iss. 4, pp. 201-205. DOI: 10.18500/1608-4039-2024-24-4-201-205, EDN: RWYSVB
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 65)
Language:
Russian
Heading:
Article type:
Article
UDC:
544.653.2/.3
EDN:
RWYSVB
Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis
Autors:
Khokhlova Mariya О., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Shubnikova Elena V. , Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Tropin Evgeniy S., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Bragina Olga A., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Nemudry Alexander P., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Abstract:
In this work, a microtubular cell with an LNO-SDC-based air electrode fabricated using the phase inversion method was investigated. The microstructure of a single cell was characterized using scanning electron microscopy. The electrochemical parameters were measured in the mode of co-electrolysis of water steam and carbon dioxide. The obtained results indicated the high efficiency of the microtubular cell.
Reference:
- Deshmukh M. K. G., Sameeroddin M., Abdul D., Sattar M. A Renewable energy in the 21st century: A review. Mater. Today: Proc., 2023, vol. 80, pp. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
- Ni M., Leung M. K., Leung D. Y. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2337–2354. https://doi.org/10.1016/j.ijhydene.2008.02.048
- Song Y., Zhang X., Xie K., Wang G., Bao X. High‐temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. Adv. Mater., 2019, vol. 31, article no. 1902033. https://doi.org/10.1002/adma.201902033
- Li Y., Zhang L., Yu B., Zhu J., Wu C. CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry. Engineering, 2023, vol. 21, pp. 101–114. https://doi.org/10.1016/j.eng.2022.02.016
- Ebbesen S. D., Knibbe R., Mogensen M. Coelectrolysis of steam and carbon dioxide in solid oxide cells. J. Electrochem. Soc., 2012, vol. 159, pp. F482– F489. https://doi.org/10.1149/2.076208jes
- Herranz J., Pătru A., Fabbri E., Schmidt T. J. Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development. Curr. Opin. Electrochem., 2020, vol. 23, pp. 89–95. https://doi.org/10.1016/j.coelec.2020.05.004
- Suzuki T., Yamaguchi T., Fujishiro Y., Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J. Power Sources, 2006, vol. 160, pp. 73–77. https://doi.org/10.1016/j.jpowsour.2006.01.037
- Shubnikova E. V., Popov M. P., Chizhik S. A., Bychkov S. F., Nemudry A. P. The modeling of oxygen transport in MIEC oxide hollow fiber membranes. Chem. Eng. J., 2019, vol. 372, pp. 251–259. https://doi.org/10.1016/j.cej.2019.04.126
- Khokhlova M. O., Shubnikova E. V., Tropin E. S., Lyskov N. V., Bragina O. A., Nemudry A. P. Performance and stability of microtubular solid oxide cell with LNO-SDC air electrode operating in fuel cell and electrolysis modes. Int. J. Hydrogen Energy, 2024, vol. 86, pp. 960–967. https://doi.org/10.1016/j.ijhydene.2024.08.490
- Monzón H., Laguna-Bercero M. A. CO2 and steam electrolysis using a microtubular solid oxide cell. J. Phys. Energy, 2019, vol. 2, article no. 014005. https://doi.org/10.1088/2515-7655/ab4250
Received:
15.10.2024
Accepted:
28.10.2024
Published:
25.12.2024
Journal issue: