Электрохимическая энергетика. 2024. Т. 24, № 4. С. 201–205 *Electrochemical Energetics*, 2024, vol. 24, no. 4, pp. 201–205 https://energetica.sgu.ru https://doi.org/10.18500/1608-4039-2024-24-4-201-205, EDN: RWYSVB

Научная статья УДК 544.653.2/.3

# ИСПОЛЬЗОВАНИЕ МИКРОТРУБЧАТЫХ ТВЕРДООКСИДНЫХ ЭЛЕМЕНТОВ ДЛЯ СОВМЕСТНОГО ЭЛЕКТРОЛИЗА УГЛЕКИСЛОГО ГАЗА И ВОДЯНОГО ПАРА

М. О. Хохлова<sup>⊠</sup>, Е. В. Шубникова, Е. С. Тропин, О. А. Брагина, А. П. Немудрый

Институт химии твердого тела и механохимии Сибирского отделения РАН Россия, 630090, г. Новосибирск, ул. Кутателадзе, д. 18

Хохлова Мария Олеговна, кандидат химических наук, научный сотрудник, khokhlova@solid.nsc.ru, https://orcid.org/ 0000-0002-0728-6369

Шубникова Елена Викторовна, кандидат химических наук, старший научный сотрудник, shubnikova@solid.nsc.ru, https://orcid.org/0000-0002-8595-7121

**Тропин Евгений Сергеевич**, кандидат химических наук, старший научный сотрудник, evg2306@mail.ru, https://orcid.org/0000-0003-4180-6054

**Брагина Ольга Анатольевна**, кандидат химических наук, старший научный сотрудник, bragina@solid.nsc.ru, https://orcid.org/0000-0003-2356-5808

**Немудрый Александр Петрович**, член-корр. РАН, доктор химических наук, директор, nemudry@solid.nsc.ru, https://orcid.org/0000-0003-3698-9124

Аннотация. В данной работе был исследован микротрубчатый элемент с воздушным электродом на основе LNO-SDC, изготовленный с помощью метода фазовой инверсии. Микроструктура единичных элементов была охарактеризована с использованием сканирующей электронной микроскопии. Электрохимические показатели были измерены в режиме совместного электролиза водяного пара и углекислого газа. Полученные результаты свидетельствуют о высокой эффективности микротрубчатого элемента.

**Ключевые слова:** электролиз, углекислый газ, твердооксидный электролизер, твердооксидный элемент

**Благодарности.** Работа выполнена в рамках молодежной лаборатории «Материалы и технологии водородной энергетики» (№ 075-03-2022-424/3).

Для цитирования: Хохлова М. О., Шубникова Е. В., Тропин Е. С., Брагина О. А., Немудрый А. П. Использование микротрубчатых твердооксидных элементов для совместного электролиза углекислого газа и водяного пара // Электрохимическая энергетика. 2024. Т. 24, № 4. С. 201–205. https://doi.org/10. 18500/1608-4039-2024-24-4-201-205, EDN: RWYSVB

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

Article

### Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis

M. O. Khokhlova<sup>⊠</sup>, E. V. Shubnikova, E. S. Tropin, O. A. Bragina, A. P. Nemudry

Institute of Solid State Chemistry and Mechanochemistry the Siberian Branch of the Russian Academy of Sciences 18 Kutateladze St., Novosibirsk 630090, Russia

Mariya O. Khokhlova, khokhlova@solid.nsc.ru, https://orcid.org/0000-0002-0728-6369 Elena V. Shubnikova, shubnikova@solid.nsc.ru, https://orcid.org/0000-0002-8595-7121 Evgeniy S. Tropin, evg2306@mail.ru, https://orcid.org/0000-0003-4180-6054 Olga A. Bragina, bragina@solid.nsc.ru, https://orcid.org/0000-0003-2356-5808 Alexander P. Nemudry, nemudry@solid.nsc.ru, https://orcid.org/0000-0003-3698-9124

**Abstract.** In this work, a microtubular cell with an LNO-SDC-based air electrode fabricated using the phase inversion method was investigated. The microstructure of a single cell was characterized using scanning

electron microscopy. The electrochemical parameters were measured in the mode of co-electrolysis of water steam and carbon dioxide. The obtained results indicated the high efficiency of the microtubular cell.

Keywords: electrolysis, carbon dioxide, solid oxide electrolyzer cell, solid oxide fuel cell

**Acknowledgments**. The work was performed within the framework of the state assignment of the ISSCM SB RAS "Laboratory of Materials and Technologies of Hydrogen Energy" (No. 075-03-2022-424/3).

**For citation:** Khokhlova M. O., Shubnikova E. V., Tropin E. S., Bragina O. A., Nemudry A. P. Microtubular solid oxide cells for carbon dioxide and water steam co-electrolysis. *Electrochemical Energetics*, 2024, vol. 24, no. 4, pp. 201–205 (in Russian). https://doi.org/10.18500/1608-4039-2024-24-4-201-205, EDN: RWYSVB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

## ВВЕДЕНИЕ

Возобновляемые источники энергии занимают лидирующие позиции в электроэнергетическом секторе. В 2023 г. их доля составила 86% от всех вновь созданных энергетических мощностей [1]. В настоящее время все большее внимание уделяется электрохимическим системам, способным решить одну из главных проблем возобновляемых источников энергии, заключающуюся в прерывистом характере их работы. Среди различных систем преобразования энергии, способных устранить данную проблему, высокотемпературные твердооксидные топливные элементы и электролизные системы привлекают все большее внимание благодаря своей высокой энергоэффективности и экологичности. В частности, высокотемпературные твердооксидные электролизеры (ТОЭ), работающие в режиме электролиза водяного пара, находят широкое применение в качестве альтернативы паровой конверсии метана, используемой для производства водорода, а также в процессах электрохимического восстановления СО<sub>2</sub> [2, 3]. Преобразование углекислого газа с помощью ТОЭ является многообещающей стратегией в векторе декарбонизации [4]. Все большее внимание также привлекает процесс совместного электролиза водяного пара и СО2 для получения синтез-газа, широко используемого в химической и нефтехимической промышленности [5, 6].

Как известно, твердооксидные топливные и электролизные элементы могут иметь различную геометрию, при этом основные из них – планарная и трубчатая. Преимуществами микротрубчатых твердооксидных элементов (МТ ТОЭ) являются высокая удельная мощность и механическая прочность, возможность быстрого запуска и выхода на рабочий режим, а также повышенная устойчивость к термоциклированию [7].

Целью настоящей работы являлось применение МТ ТОЭ для совместного электролиза водяного пара и углекислого газа.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

# Изготовление микротрубчатых анодных пористых подложек

Композитный материал NiO-YSZ (кермет) был приготовлен путем совместного помола соответствующих оксидов в вакуумном диссольвере DISPERMAT LC-55 (VMA-Getzmann, Германия). Массовое соотношение оксидов NiO и YSZ составляло 60/40%. Для приготовления пасты кермета материал был смешан с 1-метил-2-пирролидоном (х. ч., растворитель) и полисульфоном (х. ч., полимерное связующее) в массовом соотношении 9:3:1 соответственно. Микротрубчатые подложки были изготовлены методом экструзии с фазовой инверсией [8].

# Изготовление суспензий функциональных слоев

В качестве материала катодного функционального слоя (КФС) использовали композитный материал NiO-SSZ массовым соотношением оксидов 40/60% соответственно. Органическое связующее для суспензии КФС содержало бутилгликоль, поливинилбутираль и добавку ВҮК-111 (ВҮК-Gardner, Германия) в качестве растворителя, пленкообразователя, пластификатора и диспергатора соответственно. Для изготовления суспензий электролитного слоя (ЭС) и барьерного слоя (БС) использовали оксиды SSZ и SDC соответственно и органическое связующее описанного выше состава.

Материал анодного функционального слоя (АФС) был изготовлен путем совместного помола порошкообразных оксидов LNO и SDC в массовом соотношении 65/35% с последующим смешиванием с органическим связующим, содержавшим бутанол, поливинилбутираль, дибутилфталат и добавку BYK-111 в качестве растворителя, пленкообразователя, пластификатора и диспергатора соответственно. Для получения суспензии анодного токосъемного слоя (ATC) порошкообразный оксид LNF смешивали с органическим связующим того же состава, что и для суспензии АФС.

# Изготовление единичных твердооксидных электролизных элементов

На первом этапе методом погружения в суспензию на внешнюю поверхность микротрубок после промежуточной термообработки последовательно наносили функциональные слои КФС и ЭС. Далее проводили совместное припекание КФС и ЭС при температуре 1300°С в течение 1 ч. На втором этапе на поверхность предварительно припеченного электролитного слоя наносили суспензию барьерного слоя с последующей сушкой. Далее для получения полуэлементов проводили обжиг образцов при температуре 1400°С в течение 1 ч с получением газоплотного электролитного слоя и барьерного слоя достаточной плотности. На третьем этапе наносили анодные слои путем последовательного окунания в суспензии LNO-SDC и LNF с последующим совместным припеканием данных слоев при температуре 1000°С в течение 1 ч.

# Исследование характеристик МТ ТОЭ

Схема установки для проведения электрохимических измерений МТ приведена на рис. 1. Исследуемый образец МТ ТОЭ помещался между корундовыми трубками, а места соединения топливной ячейки и трубок герметизировались с помощью композитного керамического высокотемпературного клея. Далее конструкцию выдерживали в сушильном шкафу при 90°С в течение 2 ч, затем при 150°С – в течение 1 ч. Измерение электрохимических характеристик проводили с помощью потенциостата-гальваноста-



Рис. 1. Схема установки для проведения электрохимических измерений (цвет онлайн) Fig. 1. Electrochemical measurement setup scheme (color online)

та PS-20 («Smart Stat», Россия). Регулировку скорости потоков газов осуществляли с помощью регуляторов расхода газа УФПГС-4 («СоЛО», Россия). Исследования проводили при температуре 750°С и содержании 30% H<sub>2</sub>O в потоке CO<sub>2</sub>, скорость которого составляла 50 мл/мин.

# РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В процессе электролиза газообразные молекулы CO<sub>2</sub> напрямую диффундируют к катоду топливной ячейке. На первом этапе на поверхности катода молекула CO<sub>2</sub> адсорбируется из газовой фазы, а поверхностные кислородные вакансии активно участвуют в последующей диссоциации CO<sub>2</sub> и десорбции CO. Как правило, процесс диссоциации является скоростьопределяющей стадией. Основные реакции, которые происходят в процессе электролиза на электродах, изображены на рис. 1.

Таким образом, материал катода имеет определяющие значение в процессе электролиза CO<sub>2</sub> и должен соответствовать следующим требованиям: 1) иметь хорошую электронную и ионную проводимость, 2) обладать высокой каталитической активностью в электролизе CO<sub>2</sub>, 3) иметь механическую стабильность и совместимость с другими материалами топливной ячейки, 4) иметь достаточную пористость. В данной работе использовалась катодная подложка микротрубчатой формы на основе Ni-YSZ, изготовленная с помощь метода фазовой инверсии. Микрофотография поперечного сечения подложки представлена на рис. 2, *а*. Видно, что катодная подложка имеет специфическую морфологию с присутствием удлиненных пор, разделенных газоплотным слоем.

На рис. 2, б представлены результаты электрохимических измерений в режиме совместного электролиза CO<sub>2</sub>/30% H<sub>2</sub>O при температуре 750°С. При прикладываемом напряжении 1, 1.2 и 1.4 В плотность тока составила 0.31, 0.73 и 0.92 А/см<sup>2</sup> соответственно. Эти значения выше полученных для аналогичного микротрубчатого элемента, исследуемого нами ранее в режиме электролиза CO<sub>2</sub> [9]. Таким образом, представленные данные также хорошо согласуются с работами других авторов, где было показано, что в сравнении с электролизом CO<sub>2</sub>



Рис. 2. СЭМ-микрофотография поперечного сечения микротрубчатого элемента (*a*). Зависимость плотности тока от прикладываемого напряжения при работе ячейки в режиме совместного электролиза CO<sub>2</sub>/30% H<sub>2</sub>O при 750°C (*б*)



работа элемента в режиме совместного электролиза CO<sub>2</sub> и водяного пара приводит к более высоким значениям плотности тока [10].

## ЗАКЛЮЧЕНИЕ

В данной работе был изготовлен катод-несущий единичный элемент МТ ТОЭ, который был исследован при работе в режиме высокотемпературного совместного электролиза  $CO_2/30\%$  H<sub>2</sub>O. Продемонстрировано, что плотность тока достигла значений 0.31, 0.73 и 0.92 А/см<sup>2</sup> при напряжении 1, 1.2 и 1.4 В соответственно. Таким образом, полученные данные свидетельствуют о высокой эффективности МТ ТОЭ.

#### СПИСОК ЛИТЕРАТУРЫ / REFERENCES

1. Deshmukh M. K. G., Sameeroddin M., Abdul D., Sattar M. A Renewable energy in the 21st century: A review. *Mater. Today: Proc.*, 2023, vol. 80, pp. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05. 501

2. Ni M., Leung M. K., Leung D. Y. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). *Int. J. Hydrogen Energy*, 2008, vol. 33, pp. 2337–2354. https://doi.org/10.1016/j. ijhydene.2008.02.048

3. Song Y., Zhang X., Xie K., Wang G., Bao X. High-temperature CO<sub>2</sub> electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects. *Adv. Mater.*, 2019, vol. 31, article no. 1902033. https://doi.org/10.1002/adma.201902033

4. Li Y., Zhang L., Yu B., Zhu J., Wu C. CO<sub>2</sub> high-temperature electrolysis technology toward carbon neutralization in the chemical industry. *Engineering*, 2023, vol. 21, pp. 101–114. https://doi.org/10.1016/j. eng.2022.02.016

5. Ebbesen S. D., Knibbe R., Mogensen M. Coelectrolysis of steam and carbon dioxide in solid oxide cells. *J. Electrochem. Soc.*, 2012, vol. 159, pp. F482– F489. https://doi.org/10.1149/2.076208jes

6. Herranz J., Pătru A., Fabbri E., Schmidt T. J. Co-electrolysis of CO<sub>2</sub> and H<sub>2</sub>O: From electrode re-

actions to cell-level development. *Curr. Opin. Electrochem.*, 2020, vol. 23, pp. 89–95. https://doi.org/10. 1016/j.coelec.2020.05.004

7. Suzuki T., Yamaguchi T., Fujishiro Y., Awano M. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. *J. Power Sources*, 2006, vol. 160, pp. 73–77. https://doi.org/10.1016/j.jpowsour.2006.01.037

8. Shubnikova E. V., Popov M. P., Chizhik S. A., Bychkov S. F., Nemudry A. P. The modeling of oxygen transport in MIEC oxide hollow fiber membranes. *Chem. Eng. J.*, 2019, vol. 372, pp. 251–259. https://doi. org/10.1016/j.cej.2019.04.126

9. Khokhlova M. O., Shubnikova E. V., Tropin E. S., Lyskov N. V., Bragina O. A., Nemudry A. P. Performance and stability of microtubular solid oxide cell with LNO-SDC air electrode operating in fuel cell and electrolysis modes. *Int. J. Hydrogen Energy*, 2024, vol. 86, pp. 960–967. https://doi.org/10. 1016/j.ijhydene.2024.08.490

10. Monzón H., Laguna-Bercero M. A. CO<sub>2</sub> and steam electrolysis using a microtubular solid oxide cell. *J. Phys. Energy*, 2019, vol. 2, article no. 014005. https://doi.org/10.1088/2515-7655/ab4250

Поступила в редакцию 15.10.2024; одобрена после рецензирования 28.10.2024; принята к публикации 28.10.2024 The article was submitted 15.10.2024; approved after reviewing 28.10.2024; accepted for publication 28.10.2024