ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Prokhorov I. Y. Mechanisms of Protonic Conductivity in Highly Selective Membranes Containing Granulated Donor. Electrochemical Energetics, 2017, vol. 17, iss. 3, pp. 159-169. DOI: 10.18500/1608-4039-2017-17-3-159-169, EDN: YSWQNG

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 78)
Language: 
Russian
Article type: 
Article
EDN: 
YSWQNG

Mechanisms of Protonic Conductivity in Highly Selective Membranes Containing Granulated Donor

Autors: 
Prokhorov Igor' Yur'evich, Federal State Institution «A. A. Galkin Donetsk Physical and Technical Institute»
Abstract: 

DOI: https://doi.org/10.18500/1608-4039-2017-17-3-159-169

Previously obtained experimental data on protonic conductivity and permeability of polyvinyl alcohol based membranes modified using the protonated montmorillonite nanoparticles in either granulated or de-granulated condition are analyzed. Interpretation of the data in terms of charge carrier density using the Nernst–Einstein equation appears to be satisfactory only for membranes containing the isolated donor nanoparticles but rather unsatisfactory in the case of granulated donor. However, ionic conductivity of the last electrolytes can be both qualitatively and quantitatively described by the model of charge transfer between spherical granules possessing high intrinsic ionic conductivity in the pre-percolation range.

Reference: 

1. Hansen J. P., Narbel P. A., Aksnes D. L. Limits to grow thin the renewable energy sector. Renewable & Sustainable Energy Reviews, 2017, vol. 70, pp. 769–774.

2. Kramskoy Yu. G. Integratsiya vozobnovlyayemykh istochnikov elektroenergii v elektricheskiye seti s primeneniyem silovoy elektroniki [Incorporation of renewable power sources into electric gridsusingpower electronics]. Energiy aedinoy seti [Energy of Unified Grid], 2017, iss. 1 (30), pp. 52–66 (in Russian).

3. Jacobson M. Z., Delucchi M. A., Bauer Z. A. F., Goodman S. C., Chapman W. E., Cameron M. A., Bozonnat C., Chobadi L., Clonts H. A., Enevoldsen P., Erwin J. R., Fobi S. N., Goldstrom O. K., Hennessy E. M., Liu J., Lo J., Meyer C. B., Morris S. B., Moy K. R., O’Neill P. L., Petkov I., Redfern S., Schucker R., Sontag M. A., Wang J., Weiner E., Yachanin A. S. 100% Clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule, 2017, iss. 1, pp. 1–14.

4. Xu J., Kjos O. S., Osen K. S., Martinez A. M. Na-Zn liquid metal battery. J. Power Sources, 2016,vol. 332, pp. 274–280.

5. Crabtree G., Kocs E., Trahey L. The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 2015, vol. 40, pp. 1067–1076.

6. Rohrmus D., Doricht V., Weinert N. Green factory supported by advanced carbon-based manufacturing. Procedia CIRP, 2015, vol. 29, pp. 28–33.

7. Tremel A., Wasserscheid P., Baldauf M., Hammer T. Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. Intern. J. Hydrogen Energy, 2015, vol. 40, iss. 35, pp. 11457–11464.

8. Prokhorov I. Yu. Rol’ strukturnykh sostoyaniy ionnykh donorov v protonprovodyashchikh membranakhna osnove polivinilovogo spirta [Role of ionic donor’s structural state in polyvinyl alcohol based proton conducting membranes]. Elektrokhimicheskaya energetika [Electrochemical energetics], 2017, vol. 17, iss 2, pp. 89–98 (in Russian).

9. Yang C.-C., Lee Y.-J., Yang J. M. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J. Power Sources, 2009,vol. 188, iss. 1, pp. 30–37.

10. Sanglimsuwan A., Seeponkai N., Wootthikanokkhan J. Effects of concentration of organically modified nanoclay on properties of sulfonated poly(vinyl alcohol) nanocomposite membranes. Intern. J. Electrochemistry, 2011, vol. 2011, article ID 785282, 6 p.

11. Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Berlin, Springer, 2007. 645 p.

12. Prokhorov I. Yu., Radionova O. I., Akimov G. Ya. Osobennosti kristallizatsii nanokompozitnykh membrane na osnove PVS [Features of PVAbased nanocomposite membrane crystallization]. Nanostrukturnoye materialovedeniye [Material Science of Nanostructures], 2013, vol. 9, iss. 1, pp. 88–103 (in Russian).

13. Rahaman M., Aldalbahi A., Govindasami P., Khanam N. P., Bhandari S., Feng P., Altalhi T. A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers, 2017, vol. 9, iss. 10, article ID 527, 17 p. DOI: 10.3390/polum9100527

14. Solnyshkin N. I. Teoreticheskiye osnov yelektrotekhniki. Osnovy teorii elektromagnitnogo polya [Theoretical basis of electrical engineering. Fundamental sofel ectromagneticfield theory]. Pskov. Izd-vo Pskov. State Univerzity, 2013. 118 p. (in Russian).

Received: 
10.09.2017
Accepted: 
10.09.2017
Published: 
30.10.2017