ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Obukhov S. Г., Davydov D. Ю. Mathematical model of the electrochemical battery with physical constraints of available capacity. Electrochemical Energetics, 2023, vol. 23, iss. 3, pp. 121-133. DOI: 10.18500/1608-4039-2023-23-3-121-133, EDN: FYHKZY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 53)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
621.355
EDN: 
FYHKZY

Mathematical model of the electrochemical battery with physical constraints of available capacity

Autors: 
Obukhov Sergey Геннадьевич, National Research Tomsk Polytechnical University
Davydov Denis Юрьевич, National Research Tomsk Polytechnical University
Abstract: 

The article presents a universal combined model of the electrochemical battery, built on the basis of the modified Shepherd equation and the kinetic model. The proposed model provides the adequate mapping of the basic characteristics of the battery in operating mode, taking into account the physical constraints of the capacity available. The results of verification of the developed mathematical model using lead-acid and lithium-iron-phosphate batteries are presented. These results prove its higher accuracy in comparison with the basic model of MATLAB/Simulink electrochemical battery.

Reference: 
  1. Renewables 2022 Global Status Report. Paris: REN21 Secretariat, 2022. 312 p. Available at: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed June 18, 2023).
  2. Shivarama K. K., Sathish K. K. A review on hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 2015, vol. 52(C), pp. 907–916. https://doi.org/10.1016/j.rser.2015.07.187
  3. Obukhov S. G., Plotnikov I. A., Masolov V. G. The analysis of operation modes of energy stores in autonomous hybrid power plants with renewable energy resources. Alternative Energy and Ecology (ISJAEE), 2018, no. 13–15, pp. 55–67 (in Russian). https://doi.org/10.15518/isjaee.2018.13-15.055-067
  4. Kebede A. A., Kalogiannis T., Van Mierlo J., Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, 2022, vol. 159, article no. 112213. https://doi.org/10.1016/j.rser.2022.112213
  5. Behabtu H. A., Messagie M., Coosemans T., Berecibar M., Anlay Fante K., Kebede A. A., Van Mierlo J. A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability, 2020, vol. 12 (24), article no. 10511. https://doi.org/10.3390/su122410511
  6. Martyanov A. S., Gritsenko A. V., Shepelev V. D., Pletukhina V. S. Electric energy storage simulation model. Transport. Transport Facilities. Ecology, 2020, no. 3, pp. 60–70 (in Russian). https://doi.org/10.15593/24111678/2020.01.08
  7. Kulova T. L., Nikolaev I. I., Fateev V. N., Aliev A. Sh. Modern electrochemical energy storage systems. Kimya Problemlеri, 2018, vol. 16, no. 1, pp. 9–34 (in Russian).
  8. Tamilselvi S., Gunasundari S., Karuppiah N., Razak R. A., Madhusudan S., Nagarajan V. M., Sathish T., Shamim M. Z. M., Saleel C. A., Afzal A. A. Review on Battery Modelling Techniques. Sustainability, 2021, vol. 13, article no. 10042. https://doi.org/10.3390/su131810042
  9. Hu X., Li S., Peng H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources, 2012, vol. 198, pp. 359–367. https://doi.org/10.1016/j.jpowsour.2011.10.013
  10. Volkov S. S., Il’in M. E., Rogachyov V. D., Nabatchikov A. V. Modeling of the processes of changing the electrical characteristics of a lead-acid battery. Bulletin of RGRTU, 2020, no. 71, pp. 196–208 (in Russian). https://doi.org/10.21667/1995-4565-2020-71-196-208
  11. Steganov G. B., Chudnovskij Yu. A. Mathematical model of a battery for a step-current charging process. Proceedings of the Military Space Academy named after A. F. Mozhaisky, 2017, no. 657, pp. 34–40 (in Russian).
  12. Song X., Lu Y., Wang F., Zhao X., Chen H. A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: The effects of bending on battery performances. J. Power Sources, 2020, vol. 452, article no. 227803. https://doi.org/10.1016/j.jpowsour.2020.227803
  13. Borisov P. V., Vorob’ev A. A., Konstantinov K. V., Samarkina I. K. Research of lithium-ion battery characteristics. Proceedings of Petersburg Transport University, 2023, vol. 20, no. 1, pp. 207–221 (in Russian). https://doi.org/10.20295/1815-588X-2023-1-207-221
  14. Nejad S., Gladwin D. T., Stone D. A. A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. J. Power Sources, 2016, vol. 316, pp. 183–196. https://doi.org/10.1016/j.jpowsour.2016.03.042
  15. Barsegyan K. R., Perepeliza M. A., Onishchenko D. O. Mathematical model creation for the lithium-ion battery and its comparing with analogs. Izvestiya MGTU MAMI, 2022, vol. 16, no. 1, pp. 81–88 (in Russian). https://doi.org/10.17816/2074-0530-104574
  16. He H., Xiong R., Fan J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 2011, vol. 4, no. 4, pp. 582–598. https://doi.org/10.3390/en4040582
  17. Dobrego K. V., Bladyko Y. V. Modeling of Batteries and their Assemblies Taking into Account the Degradation of Parameters. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations, 2021, vol. 64, no. 1, pp. 27–39 (in Russian). https://doi.org/10.21122/1029-7448-2021-64-1-27-39
  18. Zhang S., Guo X., Zhang X. Modeling of back-propagation neural network based state-of-charge estimation for lithium-ion batteries with consideration of capacity attenuation. Advances in Electrical and Computer Engineering, 2019, vol. 19, no. 3, article no. 10. https://doi.org/10.4316/AECE.2019.03001
  19. Kashkooli A. G., Fathiannasab H., Mao Z., Chen Z. Application of artificial intelligence to state-of-charge and state-of-health estimation of calendar-aged lithium-ion pouch cells. J. Electrochem. Soc., 2019, vol. 166, no. 4, article no. A605. https://doi.org/10.1149/2.0411904jes
  20. Tremblay O., Dessaint L. A. Experimental Validation of a Battery Dynamic Model for EV Applications. World Electric Vehicle Journal, 2009, vol. 3, no. 2, pp. 289–298. https://doi.org/10.3390/wevj3020289
  21. Fomenko N. S., Grigor’ev A. S., Dinisilov A. S. Features of Lead-Acid Battery Modelling. Electrochemical Energetics, 2019, vol. 19, no. 2, pp. 81–89 (in Russian). https://doi.org/10.18500/1608-4039-2019-19-2-81-89
  22. Campagna N., Castiglia V., Miceli R., Mastromauro R. A., Spataro C., Trapanese M., Viola F. Battery Models for Battery Powered Applications: A Comparative Study. Energies, 2020, vol. 13, no. 16, article no. 4085. https://doi.org/10.3390/en13164085
  23. Song D., Sun C., Wang Q., Jang D. A Generic Battery Model and Its Parameter Identification. Energy and Power Engineering, 2018, vol. 10, no. 1, pp. 10–27. https://doi.org/10.4236/epe.2018.101002
  24. Raszmann E., Baker K., Shi Y., Christensen D. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control. IEEE Power and Energy Conference. Champaign, Illinois, February 23–24, 2017. Conference paper NREL/CP-5В00-67809. https://doi.org/10.1109/PECI.2017.7935755
  25. Manwell J. F., McGowan J. G. Lead acid battery storage model for hybrid energy systems. Solar Energy, 1993, vol. 50, no. 5, pp. 399–405. https://doi.org/10.1016/0038-092X(93)90060-2
  26. Company CS Battery Energy CO Limited (site). Available at: https://www.csbatterycn.com/ (accessed June 18, 2023).
  27. Company Yellow Battery (site). Available at: https://yellow-battery.ru/ (accessed June 18, 2023).
  28. Bindner H., Cronin T., Lundsager P., Manwell J. F., Abdulwahid U., Baring-Gould I. Lifetime modelling of lead acid batteries. Denmark, Forskningscenter Risoe, 2005. Risoe-R, No. 1515(EN).
Received: 
06.07.2023
Accepted: 
15.09.2023
Published: 
29.09.2023