ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A. Galvanostatic and potentiostatic reduction of multilayer graphene oxide in alkaline electrolyte. Electrochemical Energetics, 2025, vol. 25, iss. 2, pp. 87-94. DOI: 10.18500/1608-4039-2025-25-2-87-94, EDN: THXQSO

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 153)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.653.3
EDN: 
THXQSO

Galvanostatic and potentiostatic reduction of multilayer graphene oxide in alkaline electrolyte

Autors: 
Brudnik Sergei Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovlev Andrei Vasil'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovleva Elena Vladimirovna, The Saratov State Technical University of Gagarin Yu. A.
Alferov Andrei Alekseevich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

The results of the study of electrochemical reduction of multilayer graphene oxide in galvanostatic and potentiostatic modes are presented, the possibility of using the alkaline electrolyte KOH with the concentration of 0.01 M is shown. The identification of electrochemically reduced graphene oxide was carried out by XRD analysis, IR and Raman spectroscopy. Based on the analysis of Raman spectra, the increase in the total defectiveness,the decrease in the concentration of oxygen-containing groups and the decrease in the crystallite size of graphene oxide were determined.

Reference: 
  1. Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites. CS Appl. Electron. Mater., 2019, vol. 1, no. 2, pp. 198–209. https://doi.org/10.1021/acsaelm.8b00042
  2. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review. RSC Adv., 2020, vol. 10, pp. 15328–15345. https://doi.org/10.1039/D0RA01068E
  3. Sun L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng., 2019, vol. 27, iss. 10, pp. 2251– 2260. https://doi.org/10.1016/j.cjche.2019.05.003
  4. Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria. J. Nanomed. Nanotechnol., 2015, vol. 6, no. 1, pp. 1–4. https://doi.org/10.4172/2157-7439.1000253
  5. Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Pumera M. Graphene and its electrochemistry – an update. Chemical Society Reviews, 2019, vol. 45, no. 9, pp. 2458–2493. https://doi.org/10.1039/C6CS00136J
  6. Renteria J. A. Q., Ruiz-Garcia C., Sauvage T., Chazaro-Ruiz L. F., Rangel-Mendez J. R., Ania C. O. Photochemical and electrochemical reduction of graphene oxide thin films: Tuning the nature of surface defects. Physical Chemistry Chemical Physics, 2020, vol. 22, no. 3, pp. 20732–20743. https://doi.org/10.1039/D0CP02053B
  7. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today. J. Mater. Chem. C, 2020, vol. 8, pp. 1198–1224. https://doi.org/10.1039/C9TC04916A
  8. Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A., Tseluikin V. N., Mostovoy A. S. Electrochemical reduction of multilayer graphene oxide in an alkaline electrolyte. Electrochemical Energetics, 2023, vol. 23, no. 1, pp. 33–40. https://doi.org/10.18500/1608-4039-2023-23-1-33-40
  9. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem., 2019, vol. 55, no. 1, pp. 1196–1202. https://doi.org/10.1134/S102319351912019X
  10. Tuinstra F., Koenig J. L. Raman spectrum of graphite. The Journal of Chemical Physics, 1970, vol. 53, no. 3, pp. 1126–1130.
  11. Claramunt S., Varea A., Lopez-Diaz D. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. The Journal of Physical Chemistry C, 2015, vol. 119, no. 18, pp. 10123–10129.
  12. Zhang Q., Scrafford K., Li M. Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors. Nano Lett., 2014, vol. 14, pp. 1938. https://doi.org/10.1021/nl4047784
  13. Goodwin D. G., Adeleye A. S., Sung L. Detection and quantification of graphene-family nanomaterials in the environment. Environmental Science & Technology, 2018, vol. 52, no. 8, pp. 4491–4513. https://doi.org/10.1021/acs.est.7b04938
  14. Radon A., Wlodarczyk P., Lukowiec D. Structure, temperature and frequency depend en telectrical conductivity of oxidized and reduced electrochemically exfoliated graphite. Physica E: Low-Dimensional Systems and Nanostructures, 2018, vol. 99, pp. 82–90. https://doi.org/10.1016/j.physe.2018.01.025 
Received: 
12.05.2025
Accepted: 
09.06.2025
Published: 
30.06.2025