For citation:
Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A. Galvanostatic and potentiostatic reduction of multilayer graphene oxide in alkaline electrolyte. Electrochemical Energetics, 2025, vol. 25, iss. 2, pp. 87-94. DOI: 10.18500/1608-4039-2025-25-2-87-94, EDN: THXQSO
Galvanostatic and potentiostatic reduction of multilayer graphene oxide in alkaline electrolyte
The results of the study of electrochemical reduction of multilayer graphene oxide in galvanostatic and potentiostatic modes are presented, the possibility of using the alkaline electrolyte KOH with the concentration of 0.01 M is shown. The identification of electrochemically reduced graphene oxide was carried out by XRD analysis, IR and Raman spectroscopy. Based on the analysis of Raman spectra, the increase in the total defectiveness,the decrease in the concentration of oxygen-containing groups and the decrease in the crystallite size of graphene oxide were determined.
- Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites. CS Appl. Electron. Mater., 2019, vol. 1, no. 2, pp. 198–209. https://doi.org/10.1021/acsaelm.8b00042
- Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review. RSC Adv., 2020, vol. 10, pp. 15328–15345. https://doi.org/10.1039/D0RA01068E
- Sun L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng., 2019, vol. 27, iss. 10, pp. 2251– 2260. https://doi.org/10.1016/j.cjche.2019.05.003
- Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria. J. Nanomed. Nanotechnol., 2015, vol. 6, no. 1, pp. 1–4. https://doi.org/10.4172/2157-7439.1000253
- Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Pumera M. Graphene and its electrochemistry – an update. Chemical Society Reviews, 2019, vol. 45, no. 9, pp. 2458–2493. https://doi.org/10.1039/C6CS00136J
- Renteria J. A. Q., Ruiz-Garcia C., Sauvage T., Chazaro-Ruiz L. F., Rangel-Mendez J. R., Ania C. O. Photochemical and electrochemical reduction of graphene oxide thin films: Tuning the nature of surface defects. Physical Chemistry Chemical Physics, 2020, vol. 22, no. 3, pp. 20732–20743. https://doi.org/10.1039/D0CP02053B
- Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today. J. Mater. Chem. C, 2020, vol. 8, pp. 1198–1224. https://doi.org/10.1039/C9TC04916A
- Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A., Tseluikin V. N., Mostovoy A. S. Electrochemical reduction of multilayer graphene oxide in an alkaline electrolyte. Electrochemical Energetics, 2023, vol. 23, no. 1, pp. 33–40. https://doi.org/10.18500/1608-4039-2023-23-1-33-40
- Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem., 2019, vol. 55, no. 1, pp. 1196–1202. https://doi.org/10.1134/S102319351912019X
- Tuinstra F., Koenig J. L. Raman spectrum of graphite. The Journal of Chemical Physics, 1970, vol. 53, no. 3, pp. 1126–1130.
- Claramunt S., Varea A., Lopez-Diaz D. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. The Journal of Physical Chemistry C, 2015, vol. 119, no. 18, pp. 10123–10129.
- Zhang Q., Scrafford K., Li M. Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors. Nano Lett., 2014, vol. 14, pp. 1938. https://doi.org/10.1021/nl4047784
- Goodwin D. G., Adeleye A. S., Sung L. Detection and quantification of graphene-family nanomaterials in the environment. Environmental Science & Technology, 2018, vol. 52, no. 8, pp. 4491–4513. https://doi.org/10.1021/acs.est.7b04938
- Radon A., Wlodarczyk P., Lukowiec D. Structure, temperature and frequency depend en telectrical conductivity of oxidized and reduced electrochemically exfoliated graphite. Physica E: Low-Dimensional Systems and Nanostructures, 2018, vol. 99, pp. 82–90. https://doi.org/10.1016/j.physe.2018.01.025