ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Maksimova L. A., Tret'yachenko E. V., Gorokhovskii A. V., Vikulova M. A., Bainyashev A. M., Goffman V. G. Electrophysical properties of ceramic materials based on manganese-containing potassium polytitanates. Electrochemical Energetics, 2022, vol. 22, iss. 4, pp. 170-180. DOI: 10.18500/1608-4039-2022-22-4-170-180, EDN: ABHMME

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 126)
Article type: 

Electrophysical properties of ceramic materials based on manganese-containing potassium polytitanates

Maksimova Liliia Alekseevna, The Saratov State Technical University of Gagarin Yu. A.
Tret'yachenko Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.
Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.

The new materials obtained in the potassium polytitanate (PPT)–MnSO4 system by modifying PPT in aqueous solutions of manganese sulfate of various concentrations, followed by thermal treatment and annealing at 1080°C, were synthesized and studied. The phase composition of the obtained materials was determined. Their electrochemical and electrophysical properties in the temperature range from 250 to 700°C were studied. The maximum volumetric and intergranular conductivities of the obtained materials were observed at 250°C (9 ⋅ 10−4 and 6 ⋅ 10−4 S/cm, respectively) in the samples containing 25 wt.% MnO. The value of the activation energy of the conductivity in the volume of grains and grain boundaries was 0.37 and 0.45 eV, respectively. It was shown that the permittivity at the frequency of 1 kHz varies from 103 to 5 ⋅ 105 depending on the temperature and manganese oxide content.

  1. Schmid H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter., 2008, vol. 20, pp. 434201–434224.
  2. Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics, 2009, vol. 2, pp. 20.
  3. Shung K. K., Cannata J. M., Zhou Q. F. Piezoelectric materials for high frequency medical imaging applications: A review. J. Electroceram., 2007, vol. 19, pp. 141–147.
  4. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065.
  5. Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Fedorov F. S., Tretychenko E. V., Sevrugin A. V. Data on electrical properties of nickel modified potassium polytitanates compacted powders. Data in Brief, 2015, vol. 4, pp. 193–198.
  6. Goffman V. G., Gorokhovsky A. V., Kompan M. E., Gorshkov N. V., Sleptsov V. V., Kovnev A. V., Kovyneva N. N. Impedance spectroscopy of potassium polytitanate modified with cobalt(II) sulfate. The area of high temperatures. Electrochemical Energetics, 2015, vol. 15, no. 2, pp. 64–70 (in Russian).
  7. Gorokhovskii A. V., Goffman V. G., Gorshkov N. V., Tret’yachenko E. V., Telegina O. S., Sevryugin A. V. Electrophysical properties of ceramic articles based on potassium polytitanate nanopowder modified by iron compounds. Glass and Ceramics, 2015, vol. 72, no. 1–2, pp. 54–56.
  8. Goffman V. G., Gorokhovsky A. V., Kompan M. M., Tretyachenko E. V., Telegina O. S., Kovnev A. V., Fedorov F. S. Electrical properties of the potassium polytitanate compacts. Journal of Alloys and Compounds, 2014, vol. 615, pp. S526–S529.
  9. Kovnev A. V., Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Kompan M. E., Telegina O. S., Baranov A. M. Impedance spectroscopy of potassium polytitanate modified with cobalt salts. Electrochemical Energetics, 2014, vol. 14, no. 3, pp. 149–157 (in Russian).
  10. Scribner Associates, Inc. Available at: (accessed 12 Octoberer 2022).
  11. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 − x%(K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177.
  12. Goffman V. G., Mikhailova A. M., Toporov D. V., Telegina O. S. Diffusion processes in a silver-conducting solid electrolyte in the concept of the Grafov–Ukshe model of adsorption relaxation of a double layer. Electrochemistry, 2007, vol. 43, no. 6, pp. 657–664 (in Russian).
  13. Ivanov-Shits A. K., Murin I. V. Ionics of the solid body. Saint Petersburg, Izd-vo SPbGU, 2000. 616 p. (in Russian).
  14. Ihlefeld J. F., Clem P. G., Doyle B. L., Kotula P. G., Fenton K. R., Apblett C. A. Fast lithium‐ion conducting thin‐film electrolytes integrated directly on flexible substrates for high‐power solid‐state batteries. Advanced Materials, 2011, vol. 23, no. 47, pp. 5663–5667.
  15. Maurya R. K., Sharma P., Patel A., Bindu R. Direct evidence of the existence of Mn3+ ions in MnTiO3. EPL (Europhysics Letters), 2017, vol. 119, no. 3, article no. 37001.
  16. Choudhury R. N. P., Pati B., Das P. R., Dash R. R., Paul A. Development of electronic and electrical materials from indian ilmenite. Journal of Electronic Materials, 2013, vol. 42, no. 4, pp. 769–782.