ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Brudnik S. V., Yakovleva E. V., Gorshkov N. V., Artyukhov D. I., Yakovlev A. V. Electrode material based on multilayer graphene oxide for chemical current sources. Electrochemical Energetics, 2021, vol. 21, iss. 4, pp. 206-215. DOI: 10.18500/1608-4039-2021-21-4-206-215, EDN: HSXPEK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 69)
Article type: 

Electrode material based on multilayer graphene oxide for chemical current sources

Brudnik Sergei Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovleva Elena Vladimirovna, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Artyukhov Denis Ivanovich, The Saratov State Technical University of Gagarin Yu. A.
Yakovlev Andrei Vasil'evich, The Saratov State Technical University of Gagarin Yu. A.

The results of the studies of the electrochemical synthesis of multilayer graphene oxide were presented, and the possibility of using it as an electrode material of the supercapacitor was shown. In an alcohol suspension the thickness of the particles of multilayer graphene oxide was less than 0.1 ?m with an area of more than 100 ?m2. The graphene oxide-based electrode has a high specific capacity of 107 F?g ? 1 and a high charge retention rate of 97% after 5000 cycles. It was shown that the graphene oxide electrode had a maximum specific energy of 8.7 W?h?kg ? 1 at the current density of 0.1 A?g ? 1 and had a maximum power of 2291.1 W?kg ? 1 at the current density of 4 A?g ? 1. The application of a lithium-thionyl chloride cell with a multilayer graphene oxide cathode on a nickel grid was tested. It was found that graphene oxide synthesized using the electrochemical method is a promising electrode material for creating a symmetric supercapacitor.


1. Zhao J., Burke A. F. Review on supercapacitors : Technologies and performance evaluation. Journal of Energy Chemistry, 2021, vol. 59, pp. 276–291.

2. Frackowiak E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, vol. 9, pp. 1774–1785.

3. Shen H., Liu E., Xiang X., Huang Z., Tian Y., Wu Y., Wu Z., Xie H. A novel activated carbon for supercapacitors. Materials Research Bulletin, 2012, vol. 47, no. 3, pp. 662–666.

4. Faraji S., Ani F. N. The development supercapacitor from activated carbon by electroless plating – A review. Renewable and Sustainable Energy Reviews, 2015, vol. 42, pp. 823–834.

5. Xiao Y., Long C., Zheng M.-T., Dong H.-W., Lei B.-F., Zhang H.-R., Liu Y.-L. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chinese Chemical Letters, 2014, vol. 25, no. 6, pp. 865–868.

6. Wang Y., Xia Y. Recent progress in supercapacitors : From materials design to system construction. Advanced Materials, 2013, vol. 25, pp. 5336–5342.

7. Zhao J., Burke A. F. Electrochemical Capacitors : Performance Metrics and Evaluation by Testing and Analysis. Advanced Energy Materials, 2020, vol. 11, pp. 1–29.

8. Zhu S., Ni J., Li Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, vol. 13, pp. 1825–1841.

9. Yang Z., Tian J., Yin Z., Cui C., Qian W., Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor : A review. Carbon, 2019, vol. 41, pp. 467–480.

10. Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports, 2016, vol. 6, pp. 1–7.

11. Down M. P., Rowley-Neale S. J., Smith G. C., Banks C. E. Fabrication of Graphene Oxide Supercapacitor Devices. ACS Applied Energy Materials, 2018, vol. 1, no. 3, pp. 707–714.

12. Nishina Y., Eigler S. Chemical and electrochemical synthesis of graphene oxide – a generalized view. Nanoscale. 2020, vol. 12, pp. 12731–12740.

13. Singh R., Tripathi C. C. Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate. Materials Today : Proceedings, 2018, vol. 5, no. 1, pp. 973–979.

14. Kumar N., Srivastava V. C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega, 2018, vol. 3, pp. 10233–10242.

15. Yakovleva E. V., Yakovlev A. V., Krasnov V. V., Tseluikin V. N., Mostovoy A. S., Kuramina N. Y., Brudnik S. V. Electrochemical nanostructuring of graphite for application in chemical current sources. Electrochemical Energetics, 2020, vol. 20, no. 1, pp. 45–54 (in Russian).

16. Li Z., Gadipelli S., Yang Y., He G., Guo J., Li J., Lu Y., Howard C. A., Brett D. J. L., Parkin I. P., Li F., Guo Z. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 2019, vol. 17, pp. 12–21.

17. Li Z., Gadipelli S., Yang Y., Guo Z. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors. Small, 2017, vol. 13, no. 44, pp. 1702474.

18. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Vikulova M. A., Frolov I. N., Rakhmetulina L. A. Synthesis of multilayer graphene oxide during electrochemical dispersion of graphite in H2SO4. Journal of Applied Chemistry, 2020, vol. 93, no. 2, pp. 222–228 (in Russian).

19. Aliyev E., Filiz V., Khan M. M., Lee Y. J., Abetz C., Abetz V. Structural Characterization of Graphene Oxide : Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials, 2019, vol. 9, pp. 1180–1195.

20. Avouris P., Dimitrakopoulos C. Graphene : Synthesis and applications. Materials Today, 2012, vol. 15, no. 3, pp. 86–97.

21. Hou R., Gund G. S., Qi K., Nakhanivej P., Liu H., Li F., Park H. S. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, vol. 19, pp. 212–241.