ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Brudnik S. V., Yakovleva E. V., Gorshkov N. V., Artyukhov D. I., Yakovlev A. V. Electrode material based on multilayer graphene oxide for chemical current sources. Electrochemical Energetics, 2021, vol. 21, iss. 4, pp. 206-215. DOI: 10.18500/1608-4039-2021-21-4-206-215, EDN: HSXPEK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 179)
Language: 
Russian
Article type: 
Article
EDN: 
HSXPEK

Electrode material based on multilayer graphene oxide for chemical current sources

Autors: 
Brudnik Sergei Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovleva Elena Vladimirovna, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Artyukhov Denis Ivanovich, The Saratov State Technical University of Gagarin Yu. A.
Yakovlev Andrei Vasil'evich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

The results of the studies of the electrochemical synthesis of multilayer graphene oxide were presented, and the possibility of using it as an electrode material of the supercapacitor was shown. In an alcohol suspension the thickness of the particles of multilayer graphene oxide was less than 0.1 ?m with an area of more than 100 ?m2. The graphene oxide-based electrode has a high specific capacity of 107 F?g ? 1 and a high charge retention rate of 97% after 5000 cycles. It was shown that the graphene oxide electrode had a maximum specific energy of 8.7 W?h?kg ? 1 at the current density of 0.1 A?g ? 1 and had a maximum power of 2291.1 W?kg ? 1 at the current density of 4 A?g ? 1. The application of a lithium-thionyl chloride cell with a multilayer graphene oxide cathode on a nickel grid was tested. It was found that graphene oxide synthesized using the electrochemical method is a promising electrode material for creating a symmetric supercapacitor.

Reference: 

1. Zhao J., Burke A. F. Review on supercapacitors : Technologies and performance evaluation. Journal of Energy Chemistry, 2021, vol. 59, pp. 276–291. https://www.doi.org/10.1016/j.jechem.2020.11.013

2. Frackowiak E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, vol. 9, pp. 1774–1785. https://www.doi.org/10.1039/B618139M

3. Shen H., Liu E., Xiang X., Huang Z., Tian Y., Wu Y., Wu Z., Xie H. A novel activated carbon for supercapacitors. Materials Research Bulletin, 2012, vol. 47, no. 3, pp. 662–666. https://www.doi.org/10.1016/j.materresbull.2011.12.028

4. Faraji S., Ani F. N. The development supercapacitor from activated carbon by electroless plating – A review. Renewable and Sustainable Energy Reviews, 2015, vol. 42, pp. 823–834. https://www.doi.org/10.1016/j.rser.2014.10.068

5. Xiao Y., Long C., Zheng M.-T., Dong H.-W., Lei B.-F., Zhang H.-R., Liu Y.-L. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chinese Chemical Letters, 2014, vol. 25, no. 6, pp. 865–868. https://www.doi.org/10.1016/j.cclet.2014.05.004

6. Wang Y., Xia Y. Recent progress in supercapacitors : From materials design to system construction. Advanced Materials, 2013, vol. 25, pp. 5336–5342. https://www.doi.org/10.1002/adma.201301932

7. Zhao J., Burke A. F. Electrochemical Capacitors : Performance Metrics and Evaluation by Testing and Analysis. Advanced Energy Materials, 2020, vol. 11, pp. 1–29. https://www.doi.org/10.1002/aenm.202002192

8. Zhu S., Ni J., Li Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, vol. 13, pp. 1825–1841. https://www.doi.org/10.1007/s12274-020-2729-5

9. Yang Z., Tian J., Yin Z., Cui C., Qian W., Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor : A review. Carbon, 2019, vol. 41, pp. 467–480. https://www.doi.org/10.1016/j.carbon.2018.10.010

10. Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports, 2016, vol. 6, pp. 1–7. https://www.doi.org/10.1038/srep36143

11. Down M. P., Rowley-Neale S. J., Smith G. C., Banks C. E. Fabrication of Graphene Oxide Supercapacitor Devices. ACS Applied Energy Materials, 2018, vol. 1, no. 3, pp. 707–714. https://www.doi.org/10.1021/acsaem.7b00164

12. Nishina Y., Eigler S. Chemical and electrochemical synthesis of graphene oxide – a generalized view. Nanoscale. 2020, vol. 12, pp. 12731–12740. https://www.doi.org/10.1039/D0NR02164D

13. Singh R., Tripathi C. C. Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate. Materials Today : Proceedings, 2018, vol. 5, no. 1, pp. 973–979. https://www.doi.org/10.1016/j.matpr.2017.11.173

14. Kumar N., Srivastava V. C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega, 2018, vol. 3, pp. 10233–10242. https://www.doi.org/10.1021/acsomega.8b01283

15. Yakovleva E. V., Yakovlev A. V., Krasnov V. V., Tseluikin V. N., Mostovoy A. S., Kuramina N. Y., Brudnik S. V. Electrochemical nanostructuring of graphite for application in chemical current sources. Electrochemical Energetics, 2020, vol. 20, no. 1, pp. 45–54 (in Russian). https://www.doi.org/10.18500/1608-4039-2020-20-1-45-54

16. Li Z., Gadipelli S., Yang Y., He G., Guo J., Li J., Lu Y., Howard C. A., Brett D. J. L., Parkin I. P., Li F., Guo Z. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 2019, vol. 17, pp. 12–21. https://www.doi.org/10.1016/j.ensm.2018.12.006

17. Li Z., Gadipelli S., Yang Y., Guo Z. Design of 3D Graphene-Oxide Spheres and Their Derived Hierarchical Porous Structures for High Performance Supercapacitors. Small, 2017, vol. 13, no. 44, pp. 1702474. https://www.doi.org/10.1002/smll.201702474

18. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Vikulova M. A., Frolov I. N., Rakhmetulina L. A. Synthesis of multilayer graphene oxide during electrochemical dispersion of graphite in H2SO4. Journal of Applied Chemistry, 2020, vol. 93, no. 2, pp. 222–228 (in Russian). https://www.doi.org/10.31857/S0044461820020097

19. Aliyev E., Filiz V., Khan M. M., Lee Y. J., Abetz C., Abetz V. Structural Characterization of Graphene Oxide : Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials, 2019, vol. 9, pp. 1180–1195. https://www.doi.org/10.3390/nano9081180

20. Avouris P., Dimitrakopoulos C. Graphene : Synthesis and applications. Materials Today, 2012, vol. 15, no. 3, pp. 86–97. https://www.doi.org/10.1016/S1369-7021(12)70044-5

21. Hou R., Gund G. S., Qi K., Nakhanivej P., Liu H., Li F., Park H. S. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, vol. 19, pp. 212–241. https://www.doi.org/10.1016/j.ensm.2019.03.002

Received: 
08.11.2021
Accepted: 
10.12.2021
Published: 
16.12.2021