For citation:
Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A., Tseluikin V. N., Mostovoi A. S. Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte. Electrochemical Energetics, 2023, vol. 23, iss. 1, pp. 33-40. DOI: 10.18500/1608-4039-2023-23-1-33-40, EDN: YBLAIY
Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte
The results of the study of the electrochemical reduction of multilayer graphene oxide in the potentiostatic mode are presented and the possibility of using alkaline electrolyte (KOH) with the concentration below 0.1 M is shown. The identification of the electrochemically reduced graphene oxide was carried out using the XRD, FTIR and Raman-spectroscopy methods. Applying the method of Raman spectroscopy the increase in the intensity of the G and 2D bands, indicating the formation of few-layer forms of reduced graphene oxide was found. The surface morphology of the electrochemically reduced graphene oxide was studied by means of the SEM method.
- Khan A. H., Ghosh S., Pradhan B., Dalui A., Shrestha L. K., Acharya S., Ariga K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics and energy-related applications. Bull. Chem. Soc., 2017, vol. 90, pp. 627. https://doi.org/10.1246/bcsj.20170043
- Iro Z. S., Subramani C., Dash S. S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci., 2016, vol. 11, pp. 10628–10643. https://doi.org/10.20964/2016.12.50
- Dai L., Chang D. W., Baek J.-B., Lu W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Nano-Micro Letters, 2012, vol. 8, iss. 8, pp. 1130–1166. https://doi.org/10.1002/smll.201101594
- Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites. CS Appl. Electron. Mater., 2019, vol. 1, no. 2, pp. 198–209. https://doi.org/10.1021/acsaelm.8b00042
- Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review. RSC Adv., 2020, vol. 10, pp. 15328–15345 https://doi.org/10.1039/D0RA01068E
- Sun L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng., 2019, vol. 27, iss. 10, pp. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
- Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria. J. Nanomed. Nanotechnol., 2015, vol. 6, no. 1, pp. 1–4. https://doi.org/10.4172/2157-7439.1000253
- Brisebois P. P., Siaj M. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C, 2020, vol. 8, pp. 1517–1547. https://doi.org/10.1039/C9TC03251G
- Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep., 2016, vol. 6, article no. 36143. https://doi.org/10.1038/srep36143
- Alkhouzaam A., Qiblawey H., Khraisheh M., Atieh M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram, 2020, vol. 46, iss. 15, pp. 23997–24007. https://doi.org/10.1016/j.ceramint.2020.06.177
- De Silva K. K. H., Huang H.-H., Joshi R. K., Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon, 2017, vol. 119, pp. 190–199. https://doi.org/10.1016/j.carbon.2017.04.025
- Chua C. K., Pumera M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach. Chem. Commun., 2016, vol. 52, pp. 72–75. https://doi.org/10.1039/C5CC08170J
- Guex L. G., Sacchi B., Peuvot K. F., Andersson R. L., Pourrahimi A. M., Ström V., Farris S., Olsson R. T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, 2017, vol. 9, pp. 9562–9571. https://doi.org/https://doi.org/10.1039/C7NR02943H
- Liu Y., Feng J. An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents. Compos. Sci. Technol., 2017, vol. 140, pp. 16–22. https://doi.org/10.1016/j.compscitech.2016.12.026
- Lavin-Lopez M. P., Paton-Carrero A., Sanchez-Silva L., Valverde J. L., Romero A. Influence of the reduction strategy in the synthesis of reduced graphene oxide. Adv. Powder. Technol., 2017, vol. 28, iss. 12, pp. 3195–3203. https://doi.org/10.1016/j.apt.2017.09.032
- Abdolhosseinzadeh S., Asgharzadeh H., Seop K. H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep., 2015, vol. 5, article no. 10160. https://doi.org/10.1038/srep10160
- Sengupta I., Chakraborty S., Talukdar M., Pal S. K., Chakraborty S. Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res., 2018, vol. 33, iss. 23, pp. 4113–4122. https://doi.org/10.1557/jmr.2018.338
- Liu G., Xiong Z., Yang L., Shi H., Fang D., Wang M., Shao P., Luo X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Sci. Total. Environ., 2021, vol. 778, article no. 146301. https://doi.org/10.1016/j.scitotenv.2021.146301. Epub 2021
- Harima Y., Setodoi S., Imae I., Komaguchi K., Ooyama Y., Ohshita J., Mizota H., Yano J. Electrochemical reduction of graphene oxide in organic solvents. Electrochimica Acta, 2011, vol. 56, iss. 15, pp. 5363–5368. https://doi.org/10.1016/j.electacta.2011.03.117
- Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today. J. Mater. Chem. C, 2020, vol. 8, pp. 1198–1224. https://doi.org/10.1039/C9TC04916A
- Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem., 2019, vol. 55, no. 12, pp. 1196–1202. https://doi.org/10.1134/S102319351912019X
- Marrani A. G., Motta A., Schrebler R., Zanoni R., Dalchiele E. A. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide. Electrochimica Acta, 2019, vol. 304, pp. 231–238. https://doi.org/10.1016/j.electacta.2019.02.108
- Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials, 2018, vol. 11, iss. 7, pp. 1–15. https://doi.org/10.3390/ma11071050