ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Brudnik S. V., Yakovlev A. V., Yakovleva E. V., Alferov A. A., Tseluikin V. N., Mostovoi A. S. Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte. Electrochemical Energetics, 2023, vol. 23, iss. 1, pp. 33-40. DOI: 10.18500/1608-4039-2023-23-1-33-40, EDN: YBLAIY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 91)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
542.9526:547.551.1
EDN: 
YBLAIY

Electrochemical reduction of multilayer graphene oxide in alkaline electrolyte

Autors: 
Brudnik Sergei Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovlev Andrei Vasil'evich, The Saratov State Technical University of Gagarin Yu. A.
Yakovleva Elena Vladimirovna, The Saratov State Technical University of Gagarin Yu. A.
Alferov Andrei Alekseevich, The Saratov State Technical University of Gagarin Yu. A.
Tseluikin Vitalii Nikolaevich, Engelssky Institute of Technology of the Saratov State Technical University
Mostovoi Anton Stanislavovich, Engelssky Institute of Technology of the Saratov State Technical University
Abstract: 

The results of the study of the electrochemical reduction of multilayer graphene oxide in the potentiostatic mode are presented and the possibility of using alkaline electrolyte (KOH) with the concentration below 0.1 M is shown. The identification of the electrochemically reduced graphene oxide was carried out using the XRD, FTIR and Raman-spectroscopy methods. Applying the method of Raman spectroscopy the increase in the intensity of the G and 2D bands, indicating the formation of few-layer forms of reduced graphene oxide was found. The surface morphology of the electrochemically reduced graphene oxide was studied by means of the SEM method.

Reference: 
  1. Khan A. H., Ghosh S., Pradhan B., Dalui A., Shrestha L. K., Acharya S., Ariga K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics and energy-related applications. Bull. Chem. Soc., 2017, vol. 90, pp. 627. https://doi.org/10.1246/bcsj.20170043
  2. Iro Z. S., Subramani C., Dash S. S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci., 2016, vol. 11, pp. 10628–10643. https://doi.org/10.20964/2016.12.50
  3. Dai L., Chang D. W., Baek J.-B., Lu W. Carbon Nanomaterials for Advanced Energy Conversion and Storage. Nano-Micro Letters, 2012, vol. 8, iss. 8, pp. 1130–1166. https://doi.org/10.1002/smll.201101594
  4. Panahi-Sarmad M., Chehrazi E., Noroozi M., Raef M., Razzaghi-Kashani M., Baian M. A. H. Tuning the Surface Chemistry of Graphene Oxide for Enhanced Dielectric and Actuated Performance of Silicone Rubber Composites. CS Appl. Electron. Mater., 2019, vol. 1, no. 2, pp. 198–209. https://doi.org/10.1021/acsaelm.8b00042
  5. Yu W., Sisi L., Haiyan Y., Jie L. Progress in the functional modification of graphene / graphene oxide: A review. RSC Adv., 2020, vol. 10, pp. 15328–15345 https://doi.org/10.1039/D0RA01068E
  6. Sun L. Structure and synthesis of graphene oxide. Chin. J. Chem. Eng., 2019, vol. 27, iss. 10, pp. 2251–2260. https://doi.org/10.1016/j.cjche.2019.05.003
  7. Paulchamy B., Arthi G., Lignesh B. D. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomateria. J. Nanomed. Nanotechnol., 2015, vol. 6, no. 1, pp. 1–4. https://doi.org/10.4172/2157-7439.1000253
  8. Brisebois P. P., Siaj M. Harvesting graphene oxide – years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C, 2020, vol. 8, pp. 1517–1547. https://doi.org/10.1039/C9TC03251G
  9. Yu H., Zhang B., Bulin C., Li R., Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep., 2016, vol. 6, article no. 36143. https://doi.org/10.1038/srep36143
  10. Alkhouzaam A., Qiblawey H., Khraisheh M., Atieh M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram, 2020, vol. 46, iss. 15, pp. 23997–24007. https://doi.org/10.1016/j.ceramint.2020.06.177
  11. De Silva K. K. H., Huang H.-H., Joshi R. K., Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon, 2017, vol. 119, pp. 190–199. https://doi.org/10.1016/j.carbon.2017.04.025
  12. Chua C. K., Pumera M. The reduction of graphene oxide with hydrazine: Elucidating its reductive capability based on a reaction-model approach. Chem. Commun., 2016, vol. 52, pp. 72–75. https://doi.org/10.1039/C5CC08170J
  13. Guex L. G., Sacchi B., Peuvot K. F., Andersson R. L., Pourrahimi A. M., Ström V., Farris S., Olsson R. T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale, 2017, vol. 9, pp. 9562–9571. https://doi.org/https://doi.org/10.1039/C7NR02943H
  14. Liu Y., Feng J. An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents. Compos. Sci. Technol., 2017, vol. 140, pp. 16–22. https://doi.org/10.1016/j.compscitech.2016.12.026
  15. Lavin-Lopez M. P., Paton-Carrero A., Sanchez-Silva L., Valverde J. L., Romero A. Influence of the reduction strategy in the synthesis of reduced graphene oxide. Adv. Powder. Technol., 2017, vol. 28, iss. 12, pp. 3195–3203. https://doi.org/10.1016/j.apt.2017.09.032
  16. Abdolhosseinzadeh S., Asgharzadeh H., Seop K. H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep., 2015, vol. 5, article no. 10160. https://doi.org/10.1038/srep10160
  17. Sengupta I., Chakraborty S., Talukdar M., Pal S. K., Chakraborty S. Thermal reduction of graphene oxide: How temperature influences purity. J. Mater. Res., 2018, vol. 33, iss. 23, pp. 4113–4122. https://doi.org/10.1557/jmr.2018.338
  18. Liu G., Xiong Z., Yang L., Shi H., Fang D., Wang M., Shao P., Luo X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Sci. Total. Environ., 2021, vol. 778, article no. 146301. https://doi.org/10.1016/j.scitotenv.2021.146301. Epub 2021
  19. Harima Y., Setodoi S., Imae I., Komaguchi K., Ooyama Y., Ohshita J., Mizota H., Yano J. Electrochemical reduction of graphene oxide in organic solvents. Electrochimica Acta, 2011, vol. 56, iss. 15, pp. 5363–5368. https://doi.org/10.1016/j.electacta.2011.03.117
  20. Tarcan R., Todor-Boer O., Petrovai I., Leordean C., Astilean S., Botiz I. Reduced graphene oxide today. J. Mater. Chem. C, 2020, vol. 8, pp. 1198–1224. https://doi.org/10.1039/C9TC04916A
  21. Yakovlev A. V., Yakovleva E. V., Tseluikin V. N., Krasnov V. V., Mostovoy A. S., Rakhmetulina L. A., Frolov I. N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem., 2019, vol. 55, no. 12, pp. 1196–1202. https://doi.org/10.1134/S102319351912019X
  22. Marrani A. G., Motta A., Schrebler R., Zanoni R., Dalchiele E. A. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide. Electrochimica Acta, 2019, vol. 304, pp. 231–238. https://doi.org/10.1016/j.electacta.2019.02.108
  23. Muzyka R., Drewniak S., Pustelny T., Chrubasik M., Gryglewicz G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials, 2018, vol. 11, iss. 7, pp. 1–15. https://doi.org/10.3390/ma11071050
Received: 
12.01.2023
Accepted: 
15.03.2023
Published: 
31.03.2023