For citation:
Yakovleva E. V., Yakovlev A. V., Krasnov V. V., Tseluikin V. N., Mostovoi A. S., Kuramina N. Y., Brudnik S. V. Electrochemical Nanostructuring of Graphite for Application in Chemical Current Sources. Electrochemical Energetics, 2020, vol. 20, iss. 1, pp. 45-?. DOI: 10.18500/1608-4039-2020-20-1-45-54, EDN: HKGIPN
Electrochemical Nanostructuring of Graphite for Application in Chemical Current Sources
The results of the study of electrochemical dispersion of flake graphite in sulfuric acid were presented. It was shown that the highest dispersion efficiency was achieved while using large fractions of graphite with a particle size being more than 200 microns. The formation of the multilayer graphene oxide structures with the thickness of 0.1–1.0 microns and lateral dimensions up to 100 microns during anodic oxidation of graphite was established. The graphene structures were identified by the x-ray phase analysis and IR-Fourier spectroscopy. The possibility of obtaining base-free films from multilayer graphene oxide particles without the participation of a binder was shown, with the prospect of using them to create the flexible electrodes for supercapacitors and chemical current sources.
1. Sheng Yang, Martin R. Lohe, Klaus Mullen, Xinliang Feng. New-Generation Graphene from Electrochemical Approaches : Production and Applications. Advanced Materials, 2016, no. 28, pp. 6213–6221. DOI: https://doi.org/10.1002/adma.201505326
2. Revo S. L., Budzulyak I. M., Rachiy B. I., Kuzishin M. M. Electrode material for supercapacitors based on nanostructured carbon. Surface Engineering and Applied Electrochemistry, 2013, vol. 49, pp. 68–72. DOI: https://doi.org/10.3103/S1068375513010122
3. Parvez K., Wu Z.-S., Li R., Liu X., Graf R., Feng X., Mullen K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc., 2014, vol. 136, no.16, pp. 6083–6091. DOI: https://doi.org/10.1021/ja5017156
4. Gomaa A. M. Ali, Mashitah M. Yusoff, Kwok Feng Chong. Graphene : electrochemical production and its energy storage properties. ARPN Journal of Engineering and Applied Sciences, 2016, vol. 11, no. 16, pp. 9712–9717.
5. Jianyun Cao, Pei He, Mahdi A. Mohammed, Xin Zhao, Robert J. Young, Brian Derby, Ian A. Kinloch, Robert A. W. Dryfe Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. J. Am. Chem. Soc., 2017, vol. 139, рp. 17446–17456. DOI: https://doi.org/10.1021/jacs.7b08515
6. Rachiy B. I., Budzulyak I. M., Ivanenko E. A., Revo S. L. Composition “nanoporous carbon – thermally expanded graphite” as an effective electrode material for supercapacitor. Elektronnaya obrabotka materialov [Electronic material processing], 2015, vol. 51, no. 5, pp. 90–98 (in Russian).
7. Gubin S. P., Rychagov A. Yu., Chuprov P. N., Tkachev S. V., Kornilov D. Yu., Almazova A. S., Krasnova E. S., Voronov V. A. Supercapacitor based on electrochemically reduced graphene oxide. Electrochemical Energetics, 2015, vol. 15, no. 2, pp. 57–63 (in Russian).
8. Starshikh V. V., Maksimov E. A. Superkondensator. Patent RF, no. 2523425C2, Int. Cl. H01G9/042, H01G 11/36, H01M 6/8.
9. Rychagov A. Yu., Volfkovich Yu. M., Vorotyntsev M. A., Kvacheva L. D., Konev D. V., Krestinin A. V., Kryazhev Yu. G., Kuznetsov V. L., Kukushkina Yu.. A., Mukhin V. M., Sokolov V. V., Chervonobrodov S. P. Promising electrode materials for supercapacitor. Electrochemical Energetics, 2012, vol. 12, no. 4, pp. 167–180 (in Russian).
10. Singh R., Tripathi C. C. Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate. Materials Today : Proceedings, 2018, vol. 5, no. 1, pp. 973–979. DOI: https://doi.org/10.1016/j.matpr.2017.11.173
11. Dreyer D. R., Jia H. P., Bielawski C. W. Graphene oxide : a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie International Edition Engl., 2010, vol. 49, no. 38, 6813–6816. DOI: https://doi.org/10.1002/anie.201002160
12. Li Q., Guo X., Zhang Y., Zhang W., Ge C., Zhao L., Wang X., Zhang H., Chen J., Wang Z., Sun L. Porous graphene paper for supercapacitor applications. Journal of Materials Science and Technology, 2017, vol. 33, pp. 793–799. DOI: https://doi.org/10.1016/j.jmst.2017.03.018
13. Johnson D. W., Dobson B. P., Coleman K. S. A manufacturing perspective on graphene dispersions. Current Opinion in Colloid and Interface Science, 2015, vol. 20, no. 5–6, pp. 367–382. DOI: https://doi.org/10.1016/j.cocis.2015.11.004
14. Wang J., Salihi E. C., Siller L. Green reduction of graphene oxide using alanine. Materials Science and Engineering, 2017, vol. 72, no. 3, pp. 1–6. DOI: https://doi.org/10.1016/j.mseС. 2016.11.017
15. Zaaba N. I., Foo K. L., Hashima U., Tanb S. J., Liu W.-W., Voon C. H. Synthesis of Graphene Oxide using Modified Hummers Method : Solvent Influence. Procedia Engineering, 2017, vol. 184, pp. 469–477. DOI: https://doi.org/10.1016/j.proeng.2017.04.118
16. Edwards R. S., Coleman K. S. Graphene synthesis : relationship to applications. Nanoscale, 2013, vol. 5, no. 1, pp. 38–51. DOI: https://doi.org/10.1039/c2nr32629a
17. Avouris P., Dimitrakopoulos C. Graphene : synthesis and applications. Materials Today, 2012, vol. 15, no. 3, pp. 86–97. DOI: https://doi.org/10.1016/S1369-7021(12)70044-5