ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Yakovleva E. V., Yakovlev A. V., Krasnov V. V., Tseluikin V. N., Mostovoi A. S., Kuramina N. Y., Brudnik S. V. Electrochemical Nanostructuring of Graphite for Application in Chemical Current Sources. Electrochemical Energetics, 2020, vol. 20, iss. 1, pp. 45-?. DOI: 10.18500/1608-4039-2020-20-1-45-54, EDN: HKGIPN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 90)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
HKGIPN

Electrochemical Nanostructuring of Graphite for Application in Chemical Current Sources

Autors: 
Yakovleva Elena Vladimirovna, The Saratov State Technical University of Gagarin Yu. A.
Yakovlev Andrei Vasil'evich, The Saratov State Technical University of Gagarin Yu. A.
Krasnov Vladimir Vasil'evich, Engelssky Institute of Technology of the Saratov State Technical University
Tseluikin Vitalii Nikolaevich, Engelssky Institute of Technology of the Saratov State Technical University
Mostovoi Anton Stanislavovich, Engelssky Institute of Technology of the Saratov State Technical University
Kuramina Nataliya Yur'evna, The Saratov State Technical University of Gagarin Yu. A.
Brudnik Sergei Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

The results of the study of electrochemical dispersion of flake graphite in sulfuric acid were presented. It was shown that the highest dispersion efficiency was achieved while using large fractions of graphite with a particle size being more than 200 microns. The formation of the multilayer graphene oxide structures with the thickness of 0.1–1.0 microns and lateral dimensions up to 100 microns during anodic oxidation of graphite was established. The graphene structures were identified by the x-ray phase analysis and IR-Fourier spectroscopy. The possibility of obtaining base-free films from multilayer graphene oxide particles without the participation of a binder was shown, with the prospect of using them to create the flexible electrodes for supercapacitors and chemical current sources.

Reference: 

1. Sheng Yang, Martin R. Lohe, Klaus Mullen, Xinliang Feng. New-Generation Graphene from Electrochemical Approaches : Production and Applications. Advanced Materials, 2016, no. 28, pp. 6213–6221. DOI: https://doi.org/10.1002/adma.201505326

2. Revo S. L., Budzulyak I. M., Rachiy B. I., Kuzishin M. M. Electrode material for supercapacitors based on nanostructured carbon. Surface Engineering and Applied Electrochemistry, 2013, vol. 49, pp. 68–72. DOI: https://doi.org/10.3103/S1068375513010122

3. Parvez K., Wu Z.-S., Li R., Liu X., Graf R., Feng X., Mullen K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc., 2014, vol. 136, no.16, pp. 6083–6091. DOI: https://doi.org/10.1021/ja5017156

4. Gomaa A. M. Ali, Mashitah M. Yusoff, Kwok Feng Chong. Graphene : electrochemical production and its energy storage properties. ARPN Journal of Engineering and Applied Sciences, 2016, vol. 11, no. 16, pp. 9712–9717.

5. Jianyun Cao, Pei He, Mahdi A. Mohammed, Xin Zhao, Robert J. Young, Brian Derby, Ian A. Kinloch, Robert A. W. Dryfe Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. J. Am. Chem. Soc., 2017, vol. 139, рp. 17446–17456. DOI: https://doi.org/10.1021/jacs.7b08515

6. Rachiy B. I., Budzulyak I. M., Ivanenko E. A., Revo S. L. Composition “nanoporous carbon – thermally expanded graphite” as an effective electrode material for supercapacitor. Elektronnaya obrabotka materialov [Electronic material processing], 2015, vol. 51, no. 5, pp. 90–98 (in Russian).

7. Gubin S. P., Rychagov A. Yu., Chuprov P. N., Tkachev S. V., Kornilov D. Yu., Almazova A. S., Krasnova E. S., Voronov V. A. Supercapacitor based on electrochemically reduced graphene oxide. Electrochemical Energetics, 2015, vol. 15, no. 2, pp. 57–63 (in Russian).

8. Starshikh V. V., Maksimov E. A. Superkondensator. Patent RF, no. 2523425C2, Int. Cl. H01G9/042, H01G 11/36, H01M 6/8.

9. Rychagov A. Yu., Volfkovich Yu. M., Vorotyntsev M. A., Kvacheva L. D., Konev D. V., Krestinin A. V., Kryazhev Yu. G., Kuznetsov V. L., Kukushkina Yu.. A., Mukhin V. M., Sokolov V. V., Chervonobrodov S. P. Promising electrode materials for supercapacitor. Electrochemical Energetics, 2012, vol. 12, no. 4, pp. 167–180 (in Russian).

10. Singh R., Tripathi C. C. Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulphate. Materials Today : Proceedings, 2018, vol. 5, no. 1, pp. 973–979. DOI: https://doi.org/10.1016/j.matpr.2017.11.173

11. Dreyer D. R., Jia H. P., Bielawski C. W. Graphene oxide : a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie International Edition Engl., 2010, vol. 49, no. 38, 6813–6816. DOI: https://doi.org/10.1002/anie.201002160

12. Li Q., Guo X., Zhang Y., Zhang W., Ge C., Zhao L., Wang X., Zhang H., Chen J., Wang Z., Sun L. Porous graphene paper for supercapacitor applications. Journal of Materials Science and Technology, 2017, vol. 33, pp. 793–799. DOI: https://doi.org/10.1016/j.jmst.2017.03.018

13. Johnson D. W., Dobson B. P., Coleman K. S. A manufacturing perspective on graphene dispersions. Current Opinion in Colloid and Interface Science, 2015, vol. 20, no. 5–6, pp. 367–382. DOI: https://doi.org/10.1016/j.cocis.2015.11.004

14. Wang J., Salihi E. C., Siller L. Green reduction of graphene oxide using alanine. Materials Science and Engineering, 2017, vol. 72, no. 3, pp. 1–6. DOI: https://doi.org/10.1016/j.mseС. 2016.11.017

15. Zaaba N. I., Foo K. L., Hashima U., Tanb S. J., Liu W.-W., Voon C. H. Synthesis of Graphene Oxide using Modified Hummers Method : Solvent Influence. Procedia Engineering, 2017, vol. 184, pp. 469–477. DOI: https://doi.org/10.1016/j.proeng.2017.04.118

16. Edwards R. S., Coleman K. S. Graphene synthesis : relationship to applications. Nanoscale, 2013, vol. 5, no. 1, pp. 38–51. DOI: https://doi.org/10.1039/c2nr32629a

17. Avouris P., Dimitrakopoulos C. Graphene : synthesis and applications. Materials Today, 2012, vol. 15, no. 3, pp. 86–97. DOI: https://doi.org/10.1016/S1369-7021(12)70044-5

Received: 
07.02.2020
Accepted: 
24.02.2019
Published: 
31.03.2020