ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kolosnitsyn D. V., Егорова Н. В., Ionina A. М., Kuzmina E. V., Karaseva E. В., Kolosnitsyn S. V. Electrochemical characteristics of lithium-sulfur pouch cells. Effect of compression force of electrode modules. Electrochemical Energetics, 2025, vol. 25, iss. 1, pp. 10-22. DOI: 10.18500/1608-4039-2025-25-1-10-22, EDN: KDCAEQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 5)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.136/.136.88
EDN: 
KDCAEQ

Electrochemical characteristics of lithium-sulfur pouch cells. Effect of compression force of electrode modules

Autors: 
Kolosnitsyn Dmitry Vladimirovich, Ufa Institute of Chemistry of the Russian Academy of Sciences
Ionina Alena Михайловна, Ufa Institute of Chemistry of the Russian Academy of Sciences
Kuzmina Elena Vladimirovna, Ufa Institute of Chemistry of the Russian Academy of Sciences
Karaseva Elena Владимировна, Ufa Institute of Chemistry of the Russian Academy of Sciences
Kolosnitsyn Sergeevich Vladimir, Ufa Institute of Chemistry of the Russian Academy of Sciences
Abstract: 

The effect of the electrode sizes, the cell design and the compression force of the electrode modules on the impedance and discharge characteristics of lithium-sulfur cells was studied. It was shown that Swagelok and pouch cells with identical electrodes have different electrochemical characteristics – charge transfer resistance, discharge capacity and cycling duration. It was found that the discharge capacity at the first cycle of Swagelok and pouch cells differs by 20% approximately. The capacity of pouch cells decreases faster during cycling. The cycling of pouch cells in a compressed state (similar to Swagelok cells) does not improve the electrochemical characteristics of pouch cells.

Acknowledgments: 
The work is carried out according to the State assignment on the topics no. 124032600061-3 “Carbon materials and carbon-polymer composites as active components of positive and negative electrodes of promising energy storage devices. Synthesis, structure, properties” and no. 122031400252-2“Electrode materials and electrolyte systems for advanced energy storage devices” and under the contract for research and development work with RENERA LLC No. 463/795-D dated 21.11.2022 “Development of production technology of lithium-sulfur battery”. The work was performed on the equipment of the CCU “Chemistry”.
Reference: 
  1. Deng W., Phung J., Li G., Wang X. Realizing high-performance lithium-sulfur batteries via rational design and engineering strategies. Nano Energy, 2021, vol. 82, pp. 2211–2234. https://doi.org/10.1016/j.nanoen.2021.105761
  2. Chen Z. X., Hou L. P., Bi C. X., Cheng Q., Zhang X. Q., Li B. Q., Huang J. Q. Failure analysis of high-energy-density lithium-sulfur pouch cells. Energy Storage Materials, 2022, vol. 53, pp. 315–321. https://doi.org/10.1016/j.ensm.2022.07.035
  3. Privaldos O. L. A., Lee C., Kim J. W., Lee J. Exploring failure mechanism studies for lithium-sulfur battery pouch cells. Current Opinion in Electrochemistry, 2024, vol. 45, article no. 101516. https://doi.org/10.1016/j.coelec.2024.101516
  4. Dörfler S., Althues H., Härtel P., Abendroth Th., Schumm B., Kaskel S. Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule, 2020, vol. 4, pp. 539–554. https://doi.org/10.1016/j.joule.2020.02.006
  5. Jie Y., Tang C., Xu Y., Guo Y., Li W., Chen Y., Jia H., Zhang J., Yang M., Cao R., Lu Y., Cho J., Jiao S. Progress and Perspectives on the Development of Pouch-Type Lithium Metal Batteries. Angewandte Chemie International Edition, 2023, vol. 63, iss. 7, article no. e202307802. https://doi.org/10.1002/anie.202307802
  6. Pathak A. D., Eunho C., Wonbong C. Towards the commercialization of Li-S battery: From lab to industry. Energy Storage Materials, 2024, vol. 72, article no. 103711. https://doi.org/10.1016/j.ensm.2024.103711
  7. Das S., Gupta N., Okpowe O., Choi A., Sweeny J., Olawale, Pol V. G. Optimization of the Form Factors of Advanced Li-S Pouch Cells. Small, 2024, vol. 20, iss. 31, article no. 202311850. https://doi.org/10.1002/smll.202311850
  8. Chen Y., Choi S., Su D., Gao X., Wang G. Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy, 2018, vol. 47, pp. 331–339.
  9. Yang Y., Zheng G., Cui Y. Nanostructured sulfur cathodes. Chem. Soc. Rev., 2013, vol. 42, pp. 3018–3032.
  10. Feng X., Tan S., Xin S. Critical material and device parameters for building a beyond-500-Wh/kg lithium-sulfur battery. Next Materials, 2025, vol. 6, article no. 100395. https://doi.org/10.1016/j.nxmate.2024.100395
  11. Ding N., Yang J., Li X., Liu Z., Zong Y. Engineering High-Performance Sulfur Electrode from Industrial Conductive Carbons. ACS Sustainable Chem. Eng., 2019, vol. 7, iss. 5, pp. 5515–5523.
  12. Canas N. A., Hirose K., Pascucci B., Wagner N., Friedrich K. A., Hiesgen R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2013, vol. 97, pp. 42–51. https://doi.org/10.1016/j.electacta.2013.02.101
  13. Capkova D., Knap V., Strakova Fedorkova A., Stroe D.-I. Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. Journal of Energy Chemistry, 2022, vol. 72, pp. 318–325. https://doi.org/10.1016/j.jechem.2022.05.026
  14. Kolosnitsyn V. S., Kuzmina E. V., Karaseva E. V., Mochalov S. E. A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy. J. Power Sources, 2011, vol. 196, pp. 1478–1482. https://doi.org/10.1016/j.jpowsour.2010.08.105.
Received: 
22.11.2024
Accepted: 
20.01.2025
Published: 
28.02.2025